Cargando…
Machine Learning Algorithm to Predict Obstructive Coronary Artery Disease: Insights from the CorLipid Trial
Developing risk assessment tools for CAD prediction remains challenging nowadays. We developed an ML predictive algorithm based on metabolic and clinical data for determining the severity of CAD, as assessed via the SYNTAX score. Analytical methods were developed to determine serum blood levels of s...
Autores principales: | Panteris, Eleftherios, Deda, Olga, Papazoglou, Andreas S., Karagiannidis, Efstratios, Liapikos, Theodoros, Begou, Olga, Meikopoulos, Thomas, Mouskeftara, Thomai, Sofidis, Georgios, Sianos, Georgios, Theodoridis, Georgios, Gika, Helen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504538/ https://www.ncbi.nlm.nih.gov/pubmed/36144220 http://dx.doi.org/10.3390/metabo12090816 |
Ejemplares similares
-
Correlation of Serum Acylcarnitines with Clinical Presentation and Severity of Coronary Artery Disease
por: Deda, Olga, et al.
Publicado: (2022) -
Correlation of the severity of coronary artery disease with patients' metabolic profile- rationale, design and baseline patient characteristics of the CorLipid trial
por: Karagiannidis, Efstratios, et al.
Publicado: (2021) -
Serum Ceramides as Prognostic Biomarkers of Large Thrombus Burden in Patients with STEMI: A Micro-Computed Tomography Study
por: Karagiannidis, Efstratios, et al.
Publicado: (2021) -
Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease
por: Karagiannidis, Efstratios, et al.
Publicado: (2022) -
Association of GRACE Risk Score with Coronary Artery Disease Complexity in Patients with Acute Coronary Syndrome
por: Sofidis, Georgios, et al.
Publicado: (2021)