Cargando…

New Insights into Methyl Jasmonate Regulation of Triterpenoid Biosynthesis in Medicinal Fungal Species Sanghuangporus baumii (Pilát) L.W. Zhou & Y.C. Dai

Triterpenoids are secondary metabolites produced by the fungus Sanghuangporus baumii that have important pharmacological activities. However, the yield of triterpenoids is low and cannot meet market demand. Here, we treated S. baumii with several concentrations of MeJA (methyl jasmonate) and found t...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zengcai, Liu, Ruipeng, Tong, Xinyu, Zou, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504552/
https://www.ncbi.nlm.nih.gov/pubmed/36135614
http://dx.doi.org/10.3390/jof8090889
Descripción
Sumario:Triterpenoids are secondary metabolites produced by the fungus Sanghuangporus baumii that have important pharmacological activities. However, the yield of triterpenoids is low and cannot meet market demand. Here, we treated S. baumii with several concentrations of MeJA (methyl jasmonate) and found that the total triterpenoid content was highest (23.31 mg/g) when the MeJA concentration was 250 μmol/L. qRT-PCR was used to quantify the transcription of five key genes involved in triterpenoid biosynthesis. The results showed that the relative transcription of most genes increased with increasing MeJA concentration, indicating that MeJA is a potent inducer of triterpenoid biosynthesis in S. baumii. To further explore whether other terpenoid biosynthesis pathways are also involved in the accumulation of triterpenoids induced by MeJA, we measured the contents of cis-Zeatin (cZ), gibberellins (GAs), and the transcript levels of related biosynthesis genes. We found that MeJA significantly inhibited the biosynthesis of cZ, GAs, and the transcription of related genes. The repressive effects of MeJA on cZ and GA accumulation were further confirmed by growth rate and biomass assays. In conclusion, our study provides an effective method to enhance the triterpenoid content of S. baumii, and also provides novel insights into the mechanism of MeJA-induced triterpenoid biosynthesis.