Cargando…

Facile Regulation of Shell Thickness of the Au@MOF Core-Shell Composites for Highly Sensitive Surface-Enhanced Raman Scattering Sensing

Metal-organic frameworks (MOFs)-based core-shell composites have advanced the development of surface-enhanced Raman scattering (SERS) analysis, which originates from the promising structural characteristics of the outer framework material as well as the inherent plasmonic properties of the novel met...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Boen, Liu, Yaling, Cheng, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504720/
https://www.ncbi.nlm.nih.gov/pubmed/36146388
http://dx.doi.org/10.3390/s22187039
Descripción
Sumario:Metal-organic frameworks (MOFs)-based core-shell composites have advanced the development of surface-enhanced Raman scattering (SERS) analysis, which originates from the promising structural characteristics of the outer framework material as well as the inherent plasmonic properties of the novel metal structure core (for example, nanoparticle, MNP). However, the SERS effect only exists directly in the surface of MNP or restricted around the plasmonic MNP surface. Consequently, the nanoscale control of the thickness of MOF shell in hybrid core-shell substrates is highly desirable. Despite the great effects which have been made to integrate various MOF matrices with MNP for the purpose of improving the SERS activity, the nanoscale thickness control of MOF shell remains a significant challenge. Here, we report a facile regulation method that enables the Au NP to be encapsulated by a zirconium-based MOF (BUT-17) with different thickness through the controlling of synthesis parameters. This method provides a promising strategy for optimizing the activity of core-shell SERS substrates for potential trace detection.