Cargando…
Blind Fault Extraction of Rolling-Bearing Compound Fault Based on Improved Morphological Filtering and Sparse Component Analysis
In order to effectively separate and extract bearing composite faults, in view of the non-linearity, strong interference and unknown number of fault source signals of the measured fault signals, a composite fault-diagnosis blind extraction method based on improved morphological filtering of [Formula...
Autores principales: | Xie, Wensong, Zhou, Jun, Liu, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504767/ https://www.ncbi.nlm.nih.gov/pubmed/36146440 http://dx.doi.org/10.3390/s22187093 |
Ejemplares similares
-
Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines
por: Xiang, Ling, et al.
Publicado: (2020) -
Simultaneously Low Rank and Group Sparse Decomposition for Rolling Bearing Fault Diagnosis
por: Zheng, Kai, et al.
Publicado: (2020) -
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
por: Chen, Xianglong, et al.
Publicado: (2016) -
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
por: Tang, Jiahui, et al.
Publicado: (2022) -
Compound Fault Feature Extraction of Rolling Bearing Acoustic Signals Based on AVMD-IMVO-MCKD
por: Wu, Shishuai, et al.
Publicado: (2022)