Cargando…
Multi-User Joint Detection Using Bi-Directional Deep Neural Network Framework in NOMA-OFDM System
Non-orthogonal multiple access (NOMA) has great potential to implement the fifth-generation (5G) requirements of wireless communication. For a NOMA traditional detection method, successive interference cancellation (SIC) plays a vital role at the receiver side for both uplink and downlink transmissi...
Autores principales: | Rahman, Md Habibur, Sejan, Mohammad Abrar Shakil, Yoo, Seung-Geun, Kim, Min-A, You, Young-Hwan, Song, Hyoung-Kyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504792/ https://www.ncbi.nlm.nih.gov/pubmed/36146342 http://dx.doi.org/10.3390/s22186994 |
Ejemplares similares
-
Temporal Neural Network Framework Adaptation in Reconfigurable Intelligent Surface-Assisted Wireless Communication
por: Sejan, Mohammad Abrar Shakil, et al.
Publicado: (2023) -
Demod-CNN: A Robust Deep Learning Approach for Intelligent Reflecting Surface-Assisted Multiuser MIMO Communication
por: Sejan, Mohammad Abrar Shakil, et al.
Publicado: (2022) -
Spectral Efficiency Improvement Using Bi-Deep Learning Model for IRS-Assisted MU-MISO Communication System
por: Aziz, Md Abdul, et al.
Publicado: (2023) -
A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends
por: Sejan, Mohammad Abrar Shakil, et al.
Publicado: (2023) -
Joint Resource Allocation for Multiuser Opportunistic Beamforming Systems with OFDM-NOMA
por: Sun, Wen-Bin, et al.
Publicado: (2021)