Cargando…
Multi-Modal Learning-Based Equipment Fault Prediction in the Internet of Things
The timely detection of equipment failure can effectively avoid industrial safety accidents. The existing equipment fault diagnosis methods based on single-mode signal not only have low accuracy, but also have the inherent risk of being misled by signal noise. In this paper, we reveal the possibilit...
Autores principales: | Nan, Xin, Zhang, Bo, Liu, Changyou, Gui, Zhenwen, Yin, Xiaoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504899/ https://www.ncbi.nlm.nih.gov/pubmed/36146071 http://dx.doi.org/10.3390/s22186722 |
Ejemplares similares
-
CaFANet: Causal-Factors-Aware Attention Networks for Equipment Fault Prediction in the Internet of Things
por: Gui, Zhenwen, et al.
Publicado: (2023) -
Security and fault tolerance in Internet of Things
por: Chakraborty, Rajat Subhra, et al.
Publicado: (2019) -
Fault Detection in Power Equipment via an Unmanned Aerial System Using Multi Modal Data
por: Jalil, Bushra, et al.
Publicado: (2019) -
Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things
por: Zou, Xiuguo, et al.
Publicado: (2023) -
Fault Diagnosis Method for a Mine Hoist in the Internet of Things Environment
por: Li, Juanli, et al.
Publicado: (2018)