Cargando…

Induction of the Prenylated Stilbenoids Arachidin-1 and Arachidin-3 and Their Semi-Preparative Separation and Purification from Hairy Root Cultures of Peanut (Arachis hypogaea L.)

Prenylated stilbenoids such as arachidin-1 and arachidin-3 are stilbene derivatives that exhibit multiple pharmacological activities. We report an elicitation strategy using different combinations of cyclodextrin, hydrogen peroxide, methyl jasmonate and magnesium chloride to increase arachidin-1 and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Amit Raj, Gajurel, Gaurav, Ahmed, Izzeldin, Roedel, Krystian, Medina-Bolivar, Fabricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504991/
https://www.ncbi.nlm.nih.gov/pubmed/36144847
http://dx.doi.org/10.3390/molecules27186118
Descripción
Sumario:Prenylated stilbenoids such as arachidin-1 and arachidin-3 are stilbene derivatives that exhibit multiple pharmacological activities. We report an elicitation strategy using different combinations of cyclodextrin, hydrogen peroxide, methyl jasmonate and magnesium chloride to increase arachidin-1 and arachidin-3 production in peanut hairy root cultures. The treatment of hairy root cultures with cyclodextrin with hydrogen peroxide selectively enhanced arachidin-1 yield (132.6 ± 20.4 mg/L), which was 1.8-fold higher than arachidin-3. Similarly, cyclodextrin combined with methyl jasmonate selectively enhanced arachidin-3 yield (178.2 ± 6.8 mg/L), which was 5.5-fold higher than arachidin-1. Re-elicitation of the hairy root cultures further increased the levels of arachidin-1 and arachidin-3 by 24% and 42%, respectively. The ethyl acetate extract of the culture medium was consecutively fractionated by normal- and reversed-phase column chromatography, followed by semi-preparative HPLC purification on a C18 column to yield arachidin-1 with a recovery rate of 32% and arachidin-3 with a recovery rate of 39%, both at higher than 95% purity. This study provided a sustainable strategy to produce high-purity arachidin-1 and arachidin-3 using hairy root cultures of peanuts combined with column chromatography and semi-preparative HPLC.