Cargando…
Application of YOLOv4 Algorithm for Foreign Object Detection on a Belt Conveyor in a Low-Illumination Environment
The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not particularly effective. A key study area for minimizing longitudinal belt tears with the advancement of machine learning is how to use machine vi...
Autores principales: | Chen, Yiming, Sun, Xu, Xu, Liang, Ma, Sencai, Li, Jun, Pang, Yusong, Cheng, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504995/ https://www.ncbi.nlm.nih.gov/pubmed/36146200 http://dx.doi.org/10.3390/s22186851 |
Ejemplares similares
-
A Faster and Lighter Detection Method for Foreign Objects in Coal Mine Belt Conveyors
por: Luo, Bingxin, et al.
Publicado: (2023) -
Identifying and Characterizing Conveyor Belt Longitudinal Rip by 3D Point Cloud Processing
por: Xu, Shichang, et al.
Publicado: (2021) -
Conveyor belt of rubble.
por: Serge Dailler
Publicado: (1999) -
Placing concrete with belt conveyors /
Publicado: (1995) -
Belt Tear Detection for Coal Mining Conveyors
por: Guo, Xiaoqiang, et al.
Publicado: (2022)