Cargando…
Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM
Real-time, simultaneous, and adaptive beam steering into multiple regions of interest replaces conventional raster scanning with a less time-consuming and flexible beam steering framework, where only regions of interest are scanned by a laser beam. CUDA-OpenGL interoperability with a computationally...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505080/ https://www.ncbi.nlm.nih.gov/pubmed/36144150 http://dx.doi.org/10.3390/mi13091527 |
Sumario: | Real-time, simultaneous, and adaptive beam steering into multiple regions of interest replaces conventional raster scanning with a less time-consuming and flexible beam steering framework, where only regions of interest are scanned by a laser beam. CUDA-OpenGL interoperability with a computationally time-efficient computer-generated hologram (CGH) calculation algorithm enables such beam steering by employing a MEMS-based phase light modulator (PLM) and a Texas Instruments Phase Light Modulator (TI-PLM). The real-time CGH generation and display algorithm is incorporated into the beam steering system with variable power and scan resolution, which are adaptively controlled by camera-based object recognition. With a mid-range laptop GPU and the current version of the MEMS-PLM, the demonstrated scanning speed can exceed 1000 points/s (number of beams > 5) and potentially exceeds 4000 points/s with state-of-the-art GPUs. |
---|