Cargando…
Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques
Short-term disability progression was predicted from a baseline evaluation in patients with multiple sclerosis (MS) using their three-dimensional T1-weighted (3DT1) magnetic resonance images (MRI). One-hundred-and-eighty-one subjects diagnosed with MS underwent 3T-MRI and were followed up for two to...
Autores principales: | Taloni, Alessandro, Farrelly, Francis Allen, Pontillo, Giuseppe, Petsas, Nikolaos, Giannì, Costanza, Ruggieri, Serena, Petracca, Maria, Brunetti, Arturo, Pozzilli, Carlo, Pantano, Patrizia, Tommasin, Silvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505100/ https://www.ncbi.nlm.nih.gov/pubmed/36142563 http://dx.doi.org/10.3390/ijms231810651 |
Ejemplares similares
-
Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis
por: Tommasin, Silvia, et al.
Publicado: (2021) -
A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis
por: Ruggieri, Serena, et al.
Publicado: (2021) -
A Comprehensive Approach to Disentangle the Effect of Cerebellar Damage on Physical Disability in Multiple Sclerosis
por: Ruggieri, Serena, et al.
Publicado: (2020) -
Increased Within-Network Functional Connectivity May Predict NEDA Status in Fingolimod-Treated MS Patients
por: Piervincenzi, Claudia, et al.
Publicado: (2021) -
Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural damage in patients with multiple sclerosis and no disability
por: Tommasin, Silvia, et al.
Publicado: (2022)