Cargando…
Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach
Soft sensors based on deep learning approaches are growing in popularity due to their ability to extract high-level features from training, improving soft sensors’ performance. In the training process of such a deep model, the set of hyperparameters is critical to archive generalization and reliabil...
Autores principales: | Severino, Alcemy Gabriel Vitor, de Lima, Jean Mário Moreira, de Araújo, Fábio Meneghetti Ugulino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505118/ https://www.ncbi.nlm.nih.gov/pubmed/36146235 http://dx.doi.org/10.3390/s22186887 |
Ejemplares similares
-
Industrial Semi-Supervised Dynamic Soft-Sensor Modeling Approach Based on Deep Relevant Representation Learning
por: Moreira de Lima, Jean Mário, et al.
Publicado: (2021) -
Assessment and Certification of Neonatal Incubator Sensors through an Inferential Neural Network
por: de Araújo Júnior, José Medeiros, et al.
Publicado: (2013) -
FW-PSO Algorithm to Enhance the Invulnerability of Industrial Wireless Sensor Networks Topology
por: Zhang, Ying, et al.
Publicado: (2020) -
Manufacturing industry based on dynamic soft sensors in integrated with feature representation and classification using fuzzy logic and deep learning architecture
por: Khan, Shakir, et al.
Publicado: (2023) -
Inter-Patient ECG Heartbeat Classification with Temporal VCG Optimized by PSO
por: Garcia, Gabriel, et al.
Publicado: (2017)