Cargando…
Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model
The aim of this study is to predict local failure after partial prostate re-irradiation for the treatment of isolated locally recurrent prostate cancer by using a machine learning classifier based on radiomic features from pre-treatment computed tomography (CT), positron-emission tomography (PET) an...
Autores principales: | Pirrone, Giovanni, Matrone, Fabio, Chiovati, Paola, Manente, Stefania, Drigo, Annalisa, Donofrio, Alessandra, Cappelletto, Cristina, Borsatti, Eugenio, Dassie, Andrea, Bortolus, Roberto, Avanzo, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505150/ https://www.ncbi.nlm.nih.gov/pubmed/36143276 http://dx.doi.org/10.3390/jpm12091491 |
Ejemplares similares
-
A Multicentre Evaluation of Dosiomics Features Reproducibility, Stability and Sensitivity
por: Placidi, Lorenzo, et al.
Publicado: (2021) -
Helical Tomotherapy in Children and Adolescents: Dosimetric Comparisons, Opportunities and Issues
por: Mascarin, Maurizio, et al.
Publicado: (2011) -
Impact of Interfractional Error on Dosiomic Features
por: Puttanawarut, Chanon, et al.
Publicado: (2022) -
Dosiomics-Based Prediction of Radiation-Induced Valvulopathy after Childhood Cancer
por: Chounta, Stefania, et al.
Publicado: (2023) -
Review of Radiomics- and Dosiomics-based Predicting Models for Rectal Cancer
por: Qin, Yun, et al.
Publicado: (2022)