Cargando…
Identification and Characterization of Eimeria tenella Rhoptry Protein 35 (EtROP35)
SIMPLE SUMMARY: Rhoptry proteins (ROPs) of phylum Apicomplexa parasites are important secretory virulence factors as well as candidate vaccines. However, studies on ROPs of Eimeria tenella are limited. In this study, the coding sequence of E. tenella rhoptry protein 35 (EtROP35) was cloned, and then...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505231/ https://www.ncbi.nlm.nih.gov/pubmed/36136681 http://dx.doi.org/10.3390/vetsci9090465 |
Sumario: | SIMPLE SUMMARY: Rhoptry proteins (ROPs) of phylum Apicomplexa parasites are important secretory virulence factors as well as candidate vaccines. However, studies on ROPs of Eimeria tenella are limited. In this study, the coding sequence of E. tenella rhoptry protein 35 (EtROP35) was cloned, and then its localization, expression in parasite, potential role within invasion, and protective efficacy were investigated. Sequence analysis and subcellular localization revealed that EtROP35 is a rhoptry protein of E. tenella. Sporozoite invasion-blocking assay and protective efficacy indicated that EtROP35 might be involved in the parasite invasion process and may be a potential vaccine candidate against E. tenella. ABSTRACT: Rhoptry proteins (ROPs) of Apicomplexa are crucial secreted virulence factors and sources of vaccine candidates. To date, Eimeria tenella ROPs are not well studied. This study identified and characterized a novel E. tenella ROP (EtROP35), which showed the highest levels among 28 putative ROPs in previous sporozoite and merozoite transcriptomes. Sequence analysis showed that EtROP35 contains an N-terminal secretory signal and a protein kinase domain including eight conserved ROP35-subfamily motifs. Subsequent experiments confirmed that it is a secretory protein. Subcellular localization revealed it localized at the apical end of the sporozoites and merozoites, which was consistent with the ROPs of other Apicomplexan parasites. To further understand the biological meaning of EtROP35, expression levels in different developmental stages and sporozoite invasion-blocking assay were investigated. EtROP35 showed significantly higher levels in sporozoites (6.23-fold) and merozoites (7.00-fold) than sporulated oocysts. Sporozoite invasion-blocking assay revealed that anti-EtROP35 polyclonal antibody significantly reduced the sporozoite invasion rate, suggesting it might participate in host cell invasion and be a viable choice as a vaccine candidate. The immunological protective assays showed that EtROP35 could induce a high level of serum IgY and higher mean body weight gain, and lower cecum lesion score and oocysts excretion than the challenged control group. These data indicated that EtROP35 had good immunogenicity and may be a promising vaccine candidate against E. tenella. |
---|