Cargando…

An Infrastructure for Enabling Dynamic Fault Tolerance in Highly-Reliable Adaptive Distributed Embedded Systems Based on Switched Ethernet

Distributed Embedded Systems (DESs) carrying out critical tasks must be highly reliable and hard in real-time. Moreover, to operate in dynamic operational contexts in an effective and efficient manner, they must also be adaptive. Adaptivity is particularly interesting from a dependability perspectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Ballesteros, Alberto, Barranco, Manuel, Proenza, Julián, Almeida, Luís, Pozo, Francisco, Palmer-Rodríguez, Pere
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505247/
https://www.ncbi.nlm.nih.gov/pubmed/36146448
http://dx.doi.org/10.3390/s22187099
Descripción
Sumario:Distributed Embedded Systems (DESs) carrying out critical tasks must be highly reliable and hard in real-time. Moreover, to operate in dynamic operational contexts in an effective and efficient manner, they must also be adaptive. Adaptivity is particularly interesting from a dependability perspective, as it can be used to develop dynamic fault tolerance mechanisms, which, in combination with static ones, make it possible to provide better and more efficient fault tolerance. However, constructing a DES with such complexity presents many challenges. This is because all the mechanisms that support fault tolerance, real-time, and adaptivity must be designed to operate in a coordinated manner. This paper presents the Dynamic Fault Tolerance for Flexible Time-Triggered Ethernet (DFT4FTT), a self-reconfigurable infrastructure for implementing highly reliable adaptive DES. Here, we describe the design of its hardware and software architecture and the main set of mechanisms, with a focus on fault tolerance.