Cargando…
Practical and Accurate Indoor Localization System Using Deep Learning
Indoor localization is an important technology for providing various location-based services to smartphones. Among the various indoor localization technologies, pedestrian dead reckoning using inertial measurement units is a simple and highly practical solution for indoor localization. In this study...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505274/ https://www.ncbi.nlm.nih.gov/pubmed/36146116 http://dx.doi.org/10.3390/s22186764 |
Sumario: | Indoor localization is an important technology for providing various location-based services to smartphones. Among the various indoor localization technologies, pedestrian dead reckoning using inertial measurement units is a simple and highly practical solution for indoor localization. In this study, we propose a smartphone-based indoor localization system using pedestrian dead reckoning. To create a deep learning model for estimating the moving speed, accelerometer data and GPS values were used as input data and data labels, respectively. This is a practical solution compared with conventional indoor localization mechanisms using deep learning. We improved the positioning accuracy via data preprocessing, data augmentation, deep learning modeling, and correction of heading direction. In a horseshoe-shaped indoor building of 240 m in length, the experimental results show a distance error of approximately 3 to 5 m. |
---|