Cargando…

Practical and Accurate Indoor Localization System Using Deep Learning

Indoor localization is an important technology for providing various location-based services to smartphones. Among the various indoor localization technologies, pedestrian dead reckoning using inertial measurement units is a simple and highly practical solution for indoor localization. In this study...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Jeonghyeon, Kim, Seungku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505274/
https://www.ncbi.nlm.nih.gov/pubmed/36146116
http://dx.doi.org/10.3390/s22186764
Descripción
Sumario:Indoor localization is an important technology for providing various location-based services to smartphones. Among the various indoor localization technologies, pedestrian dead reckoning using inertial measurement units is a simple and highly practical solution for indoor localization. In this study, we propose a smartphone-based indoor localization system using pedestrian dead reckoning. To create a deep learning model for estimating the moving speed, accelerometer data and GPS values were used as input data and data labels, respectively. This is a practical solution compared with conventional indoor localization mechanisms using deep learning. We improved the positioning accuracy via data preprocessing, data augmentation, deep learning modeling, and correction of heading direction. In a horseshoe-shaped indoor building of 240 m in length, the experimental results show a distance error of approximately 3 to 5 m.