Cargando…
Radiomics from Various Tumour Volume Sizes for Prognosis Prediction of Head and Neck Squamous Cell Carcinoma: A Voted Ensemble Machine Learning Approach
Background: Traditionally, cancer prognosis was determined by tumours size, lymph node spread and presence of metastasis (TNM staging). Radiomics of tumour volume has recently been used for prognosis prediction. In the present study, we evaluated the effect of various sizes of tumour volume. A voted...
Autores principales: | Tang, Fuk-Hay, Cheung, Eva-Yi-Wah, Wong, Hiu-Lam, Yuen, Chun-Ming, Yu, Man-Hei, Ho, Pui-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505304/ https://www.ncbi.nlm.nih.gov/pubmed/36143416 http://dx.doi.org/10.3390/life12091380 |
Ejemplares similares
-
Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
por: Osamor, Victor Chukwudi, et al.
Publicado: (2021) -
Radiomics-Based Artificial Intelligence Differentiation of Neurodegenerative Diseases with Reference to the Volumetry
por: Cheung, Eva Y. W., et al.
Publicado: (2022) -
A Selective Voting Convex-Hull Ensemble Procedure for Personalized Medicine
por: Nagarajan, Radhakrishnan, et al.
Publicado: (2012) -
Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization
por: Mohammedqasim, Hayder, et al.
Publicado: (2022)