Cargando…
Low-Light Image Enhancement Using Hybrid Deep-Learning and Mixed-Norm Loss Functions
This study introduces a low-light image enhancement method using a hybrid deep-learning network and mixed-norm loss functions, in which the network consists of a decomposition-net, illuminance enhance-net, and chroma-net. To consider the correlation between R, G, and B channels, YCbCr channels conve...
Autores principales: | Oh, JongGeun, Hong, Min-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505333/ https://www.ncbi.nlm.nih.gov/pubmed/36146252 http://dx.doi.org/10.3390/s22186904 |
Ejemplares similares
-
Adaptive Image Rendering Using a Nonlinear Mapping-Function-Based Retinex Model
por: Oh, JongGeun, et al.
Publicado: (2019) -
A Survey of Deep Learning-Based Low-Light Image Enhancement
por: Tian, Zhen, et al.
Publicado: (2023) -
Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis
por: Chang, Hyuk-Joon, et al.
Publicado: (2020) -
Low-Light Image Enhancement via Retinex-Style Decomposition of Denoised Deep Image Prior
por: Gao, Xianjie, et al.
Publicado: (2022) -
Mixed-Norm Regularization for Brain Decoding
por: Flamary, R., et al.
Publicado: (2014)