Cargando…

Rayleigh-Based Distributed Optical Fiber Sensing

Distributed optical fiber sensing is a unique technology that offers unprecedented advantages and performance, especially in those experimental fields where requirements such as high spatial resolution, the large spatial extension of the monitored area, and the harshness of the environment limit the...

Descripción completa

Detalles Bibliográficos
Autores principales: Palmieri, Luca, Schenato, Luca, Santagiustina, Marco, Galtarossa, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505392/
https://www.ncbi.nlm.nih.gov/pubmed/36146159
http://dx.doi.org/10.3390/s22186811
Descripción
Sumario:Distributed optical fiber sensing is a unique technology that offers unprecedented advantages and performance, especially in those experimental fields where requirements such as high spatial resolution, the large spatial extension of the monitored area, and the harshness of the environment limit the applicability of standard sensors. In this paper, we focus on one of the scattering mechanisms, which take place in fibers, upon which distributed sensing may rely, i.e., the Rayleigh scattering. One of the main advantages of Rayleigh scattering is its higher efficiency, which leads to higher SNR in the measurement; this enables measurements on long ranges, higher spatial resolution, and, most importantly, relatively high measurement rates. The first part of the paper describes a comprehensive theoretical model of Rayleigh scattering, accounting for both multimode propagation and double scattering. The second part reviews the main application of this class of sensors.