Cargando…
Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing nu...
Autores principales: | Nadeem, Muhammad Waqas, Goh, Hock Guan, Hussain, Muzammil, Liew, Soung-Yue, Andonovic, Ivan, Khan, Muhammad Adnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505428/ https://www.ncbi.nlm.nih.gov/pubmed/36146130 http://dx.doi.org/10.3390/s22186780 |
Ejemplares similares
-
Bone Age Assessment Empowered with Deep Learning: A Survey, Open Research Challenges and Future Directions
por: Nadeem, Muhammad Waqas, et al.
Publicado: (2020) -
A Fusion-Based Machine Learning Approach for the Prediction of the Onset of Diabetes
por: Nadeem, Muhammad Waqas, et al.
Publicado: (2021) -
Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges
por: Nadeem, Muhammad Waqas, et al.
Publicado: (2020) -
Emerging technologies for COVID (ET-CoV) detection and diagnosis: Recent advancements, applications, challenges, and future perspectives
por: Rehman, Amir, et al.
Publicado: (2023) -
Ransomware: Recent advances, analysis, challenges and future research directions
por: Beaman, Craig, et al.
Publicado: (2021)