Cargando…

Comparative Genotypic Analysis of RAPD and RFLP Markers for Molecular Variation Detection of Methicillin-Resistant Staphylococcus aureus Clinical Isolates

Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) isolates are associated with various diseases ranged from mild superficial impairments to invasive infections. This study aimed to evaluate the ability of polymerase chain reaction (PCR) based methods namely, restriction f...

Descripción completa

Detalles Bibliográficos
Autores principales: Elkady, Fathy M., Al-Askar, Abdulaziz A., Tawab, Ahmed Abdel, Alkherkhisy, Mohammad M., Arishi, Amr A., Hashem, Amr H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505472/
https://www.ncbi.nlm.nih.gov/pubmed/36143922
http://dx.doi.org/10.3390/medicina58091245
Descripción
Sumario:Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) isolates are associated with various diseases ranged from mild superficial impairments to invasive infections. This study aimed to evaluate the ability of polymerase chain reaction (PCR) based methods namely, restriction fragment length polymorphism (RFLP) of the coa gene and random amplified polymorphic DNA (RAPD), to determine the genetic diversity of MRSA isolates. Materials and Methods: A total of 37 MRSA isolates were conventionally identified depending on their biochemical and microbiological culture characteristics. Genotypic confirmation was based on detection of the associated mecA gene. The genetic variation amongst MRSA isolates was evaluated following the coa gene-based RFLP and RAPD fingerprints. Results: Results illustrated that, the species specific coa gene was detected in all MRSA isolates. The irregular bands intensity, number, and molecular sizes of the PCR amplicons demonstrated the coa gene polymorphism. The incompatible AluI digestion patterns of these amplicons classified the tested MRSA isolates into 20 RFLP patterns which confirm the coa gene polymorphism. Additionally, the PCR-based RAPD analysis showed variable bands number with size range of approximately 130 bp to 4 kbp, which indicated the genetic variation of the tested MRSA isolates as it created 36 variable RAPD banding profiles. Conclusions: coa gene AluI enzymatic restriction sites, amongst the tested MRSA isolates, certify their genetic variation on the basis of the accurate but complicated and relatively expensive coa gene-based RFLP. Conversely, the results verified the excellent ability of the simple and cost-effective PCR-based RAPD analysis to discriminate between MRSA isolates without any preface data about the genome.