Cargando…
Deep Neural Network-Evaluated Thermal Conductivity for Two-Phase WC-M (M = Ag, Co) Cemented Carbides
DNN (Deep Neural Network) is one kind of method for artificial intelligence, which has been applied in various fields including the exploration of material properties. In the present work, DNN, in combination with the 10-fold cross-validation, is applied to evaluate and predict the thermal conductiv...
Autores principales: | Wen, Shiyi, Li, Xiaoguang, Wang, Bo, Tan, Jing, Liu, Yuling, Lv, Jian, Tan, Zhuopeng, Yin, Lei, Du, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505479/ https://www.ncbi.nlm.nih.gov/pubmed/36143580 http://dx.doi.org/10.3390/ma15186269 |
Ejemplares similares
-
Investigations on Thermal Conductivity of Two-Phase WC-Co-Ni Cemented Carbides through a Novel Model and Key Experiments
por: Wen, Shiyi, et al.
Publicado: (2023) -
Topology of WC/Co Interfaces in Cemented Carbides
por: Straumal, Boris B., et al.
Publicado: (2023) -
Comparative Study of Corrosion Behaviors of WC-NiMo and WC-Co Cemented Carbides
por: Balbino, Nádia Alves Nery, et al.
Publicado: (2023) -
Faceting/Roughening of WC/Binder Interfaces in Cemented Carbides: A Review
por: Straumal, Boris B., et al.
Publicado: (2023) -
Effect of WC/Co coherency phase boundaries on Fracture toughness of the nanocrystalline cemented carbides
por: Xie, Hongxian, et al.
Publicado: (2016)