Cargando…
Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance
Drought stress is one of the most devastating abiotic factors limiting plant growth and development. Devising an efficient and rapid screening method at the seedling stage is vital in identifying genotypes best suited under drought conditions. An experiment was conducted to assess 74 rice genotypes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505502/ https://www.ncbi.nlm.nih.gov/pubmed/36145733 http://dx.doi.org/10.3390/plants11182332 |
_version_ | 1784796488722808832 |
---|---|
author | Kakar, Naqeebullah Jumaa, Salah H. Sah, Saroj Kumar Redoña, Edilberto D. Warburton, Marilyn L. Reddy, Kambham R. |
author_facet | Kakar, Naqeebullah Jumaa, Salah H. Sah, Saroj Kumar Redoña, Edilberto D. Warburton, Marilyn L. Reddy, Kambham R. |
author_sort | Kakar, Naqeebullah |
collection | PubMed |
description | Drought stress is one of the most devastating abiotic factors limiting plant growth and development. Devising an efficient and rapid screening method at the seedling stage is vital in identifying genotypes best suited under drought conditions. An experiment was conducted to assess 74 rice genotypes for drought tolerance using specially designed mini-hoop structures. Two treatments were imposed on rice seedlings, including 100% moisture and a 50% moisture regime. Several shoot morpho-physiological traits and root traits were measured and analyzed. The genotypes exhibited a wide range of variability for the measured traits, with the leaf area showing the most significant variation, followed by plant height, tiller number, and shoot dry weight. In contrast, the drought did not significantly affect most root traits. The germplasm was classified into different categories using cumulative drought stress response indices (CDSRI); 19 genotypes (26%) were identified as drought sensitive, and 33 (45%), 15 (20%), and 7 (9%) were determined as low, moderately, and highly drought-tolerant, respectively. Genotypes IR86638 and IR49830 were the most and least drought-tolerant, respectively. Overall, a poor correlation was observed between CDSRI, total shoot traits (R(2) = 0.36), and physiological parameters (R(2) = 0.10). A strong linear correlation was found between CDSRI and root traits (R(2) = 0.81), suggesting that root traits are more crucial and better descriptors in screening for drought tolerance. This study can help rice breeders and scientists to accelerate breeding by adopting a mini-hoop rapid screening method. The tolerant genotypes could serve as appropriate donor parents, progenies, and potential genotypes for developing drought-tolerant commercial cultivars. |
format | Online Article Text |
id | pubmed-9505502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95055022022-09-24 Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance Kakar, Naqeebullah Jumaa, Salah H. Sah, Saroj Kumar Redoña, Edilberto D. Warburton, Marilyn L. Reddy, Kambham R. Plants (Basel) Article Drought stress is one of the most devastating abiotic factors limiting plant growth and development. Devising an efficient and rapid screening method at the seedling stage is vital in identifying genotypes best suited under drought conditions. An experiment was conducted to assess 74 rice genotypes for drought tolerance using specially designed mini-hoop structures. Two treatments were imposed on rice seedlings, including 100% moisture and a 50% moisture regime. Several shoot morpho-physiological traits and root traits were measured and analyzed. The genotypes exhibited a wide range of variability for the measured traits, with the leaf area showing the most significant variation, followed by plant height, tiller number, and shoot dry weight. In contrast, the drought did not significantly affect most root traits. The germplasm was classified into different categories using cumulative drought stress response indices (CDSRI); 19 genotypes (26%) were identified as drought sensitive, and 33 (45%), 15 (20%), and 7 (9%) were determined as low, moderately, and highly drought-tolerant, respectively. Genotypes IR86638 and IR49830 were the most and least drought-tolerant, respectively. Overall, a poor correlation was observed between CDSRI, total shoot traits (R(2) = 0.36), and physiological parameters (R(2) = 0.10). A strong linear correlation was found between CDSRI and root traits (R(2) = 0.81), suggesting that root traits are more crucial and better descriptors in screening for drought tolerance. This study can help rice breeders and scientists to accelerate breeding by adopting a mini-hoop rapid screening method. The tolerant genotypes could serve as appropriate donor parents, progenies, and potential genotypes for developing drought-tolerant commercial cultivars. MDPI 2022-09-06 /pmc/articles/PMC9505502/ /pubmed/36145733 http://dx.doi.org/10.3390/plants11182332 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kakar, Naqeebullah Jumaa, Salah H. Sah, Saroj Kumar Redoña, Edilberto D. Warburton, Marilyn L. Reddy, Kambham R. Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance |
title | Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance |
title_full | Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance |
title_fullStr | Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance |
title_full_unstemmed | Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance |
title_short | Genetic Variability Assessment of Tropical Indica Rice (Oryza sativa L.) Seedlings for Drought Stress Tolerance |
title_sort | genetic variability assessment of tropical indica rice (oryza sativa l.) seedlings for drought stress tolerance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505502/ https://www.ncbi.nlm.nih.gov/pubmed/36145733 http://dx.doi.org/10.3390/plants11182332 |
work_keys_str_mv | AT kakarnaqeebullah geneticvariabilityassessmentoftropicalindicariceoryzasativalseedlingsfordroughtstresstolerance AT jumaasalahh geneticvariabilityassessmentoftropicalindicariceoryzasativalseedlingsfordroughtstresstolerance AT sahsarojkumar geneticvariabilityassessmentoftropicalindicariceoryzasativalseedlingsfordroughtstresstolerance AT redonaedilbertod geneticvariabilityassessmentoftropicalindicariceoryzasativalseedlingsfordroughtstresstolerance AT warburtonmarilynl geneticvariabilityassessmentoftropicalindicariceoryzasativalseedlingsfordroughtstresstolerance AT reddykambhamr geneticvariabilityassessmentoftropicalindicariceoryzasativalseedlingsfordroughtstresstolerance |