Cargando…
Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance
Background. Many pathological conditions of both cardiovascular and non-cardiac origin in the course of their development cause damage to contractile cardiac muscle cells—cardiac myocytes (CMCs). One of the most sensitive and specific criteria for detecting CMCs are cardiac troponins (CTs), which ar...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505657/ https://www.ncbi.nlm.nih.gov/pubmed/36143484 http://dx.doi.org/10.3390/life12091448 |
Sumario: | Background. Many pathological conditions of both cardiovascular and non-cardiac origin in the course of their development cause damage to contractile cardiac muscle cells—cardiac myocytes (CMCs). One of the most sensitive and specific criteria for detecting CMCs are cardiac troponins (CTs), which are regulatory protein molecules that are released into the blood serum from CMCs upon their death or damage. New (high-sensitive) methods for detecting CTs allow the detection of minor CMCs damages at the earliest stages of cardiovascular diseases and can therefore change the understanding of disease development mechanisms and open up new diagnostic possibilities. One of the most common and dangerous early diseases of the cardiovascular system is arterial hypertension. The purpose of this paper is to summarize the pathophysiological mechanisms underlying CMCs damage and CTs release into the bloodstream in the case of arterial hypertension and to state the clinical significance of increased CTs levels in patients with arterial hypertension. Materials and methods. This is a descriptive review, which was prepared using the following databases: Embase, Pubmed/Medline and Web of Science. The following key words were used in the literature search: “myocardial injury” and “arterial hypertension” in combination with the terms “cardiac troponins” and “mechanisms of increase”. Conclusions. According to a literature analysis, CMCs damage and CTs release in the case of arterial hypertension occur according to the following pathophysiological mechanisms: myocardial hypertrophy, CMCs apoptosis, damage to the CMC cell membrane and increase in its permeability for CTs molecules, as well as changes in the glomerular filtration rate. Most often, increased CTs serum levels in case of arterial hypertension indicate an unfavorable prognosis. Data on the CTs predictive significance in case of arterial hypertension open the prospects for the use of these biomarkers in the choice of patient management plans. |
---|