Cargando…
Training Deep Neural Networks with Novel Metaheuristic Algorithms for Fatigue Crack Growth Prediction in Aluminum Aircraft Alloys
Fatigue cracks are a major defect in metal alloys, and specifically, their study poses defect evaluation challenges in aluminum aircraft alloys. Existing inline inspection tools exhibit measurement uncertainties. The physical-based methods for crack growth prediction utilize stress analysis models a...
Autores principales: | Zafar, Muhammad Hamza, Younis, Hassaan Bin, Mansoor, Majad, Moosavi, Syed Kumayl Raza, Khan, Noman Mujeeb, Akhtar, Naureen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505683/ https://www.ncbi.nlm.nih.gov/pubmed/36143505 http://dx.doi.org/10.3390/ma15186198 |
Ejemplares similares
-
Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050
por: Teng, Yunnan, et al.
Publicado: (2022) -
Characterization of internal fatigue cracks in aluminum alloys by simulation of phase contrast tomography
por: Xiao, Ce, et al.
Publicado: (2022) -
Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation
por: Shiraiwa, Takayuki, et al.
Publicado: (2023) -
Author Correction: Characterization of internal fatigue cracks in aluminum alloys by simulation of phase contrast tomography
por: Xiao, Ce, et al.
Publicado: (2023) -
Influence of Retrogression Time on the Fatigue Crack Growth Behavior of a Modified AA7475 Aluminum Alloy
por: Zheng, Xu, et al.
Publicado: (2023)