Cargando…
Image-Based Finite Element Modeling Approach for Characterizing In Vivo Mechanical Properties of Human Arteries
Mechanical properties of the arterial walls could provide meaningful information for the diagnosis, management and treatment of cardiovascular diseases. Classically, various experimental approaches were conducted on dissected arterial tissues to obtain their stress–stretch relationship, which has li...
Autores principales: | Wang, Liang, Maehara, Akiko, Lv, Rui, Guo, Xiaoya, Zheng, Jie, Billiar, Kisten L., Mintz, Gary S., Tang, Dalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505727/ https://www.ncbi.nlm.nih.gov/pubmed/36135582 http://dx.doi.org/10.3390/jfb13030147 |
Ejemplares similares
-
Quantifying Patient-Specific in vivo Coronary Plaque Material Properties for Accurate Stress/Strain Calculations: An IVUS-Based Multi-Patient Study
por: Wang, Liang, et al.
Publicado: (2021) -
Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions
por: Lv, Rui, et al.
Publicado: (2023) -
Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study
por: Lv, Rui, et al.
Publicado: (2020) -
Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid–structure interaction models and machine learning methods with patient follow-up data: a feasibility study
por: Guo, Xiaoya, et al.
Publicado: (2021) -
Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models
por: Lv, Rui, et al.
Publicado: (2021)