Cargando…
WCNN3D: Wavelet Convolutional Neural Network-Based 3D Object Detection for Autonomous Driving
Three-dimensional object detection is crucial for autonomous driving to understand the driving environment. Since the pooling operation causes information loss in the standard CNN, we designed a wavelet-multiresolution-analysis-based 3D object detection network without a pooling operation. Additiona...
Autores principales: | Alaba, Simegnew Yihunie, Ball, John E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505771/ https://www.ncbi.nlm.nih.gov/pubmed/36146359 http://dx.doi.org/10.3390/s22187010 |
Ejemplares similares
-
A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving
por: Alaba, Simegnew Yihunie, et al.
Publicado: (2022) -
Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation
por: Pastor, Francisco, et al.
Publicado: (2019) -
Research on improved convolutional wavelet neural network
por: Liu, Jingwei, et al.
Publicado: (2021) -
Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks
por: He, Runnan, et al.
Publicado: (2018) -
O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification
por: Jangra, Manisha, et al.
Publicado: (2021)