Cargando…

Genome-Wide Identification and Expression Patterns of the F-box Family in Poplar under Salt Stress

The F-box family exists in a wide variety of plants and plays an extremely important role in plant growth, development and stress responses. However, systematic studies of F-box family have not been reported in populus trichocarpa. In the present study, 245 PtrFBX proteins in total were identified,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Gaofeng, Xia, Xinhui, Yao, Wenjing, Cheng, Zihan, Zhang, Xuemei, Jiang, Jiahui, Zhou, Boru, Jiang, Tingbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505895/
https://www.ncbi.nlm.nih.gov/pubmed/36142847
http://dx.doi.org/10.3390/ijms231810934
Descripción
Sumario:The F-box family exists in a wide variety of plants and plays an extremely important role in plant growth, development and stress responses. However, systematic studies of F-box family have not been reported in populus trichocarpa. In the present study, 245 PtrFBX proteins in total were identified, and a phylogenetic tree was constructed on the basis of their C-terminal conserved domains, which was divided into 16 groups (A–P). F-box proteins were located in 19 chromosomes and six scaffolds, and segmental duplication was main force for the evolution of the F-box family in poplar. Collinearity analysis was conducted between poplar and other species including Arabidopsis thaliana, Glycine max, Anemone vitifolia Buch, Oryza sativa and Zea mays, which indicated that poplar has a relatively close relationship with G. max. The promoter regions of PtrFBX genes mainly contain two kinds of cis-elements, including hormone-responsive elements and stress-related elements. Transcriptome analysis indicated that there were 82 differentially expressed PtrFBX genes (DEGs), among which 64 DEGs were in the roots, 17 in the leaves and 26 in the stems. In addition, a co-expression network analysis of four representative PtrFBX genes indicated that their co-expression gene sets were mainly involved in abiotic stress responses and complex physiological processes. Using bioinformatic methods, we explored the structure, evolution and expression pattern of F-box genes in poplar, which provided clues to the molecular function of F-box family members and the screening of salt-tolerant PtrFBX genes.