Cargando…

Fault Detection for Wind Turbine Blade Bolts Based on GSG Combined with CS-LightGBM

Aiming at the problem of class imbalance in the wind turbine blade bolts operation-monitoring dataset, a fault detection method for wind turbine blade bolts based on Gaussian Mixture Model–Synthetic Minority Oversampling Technique–Gaussian Mixture Model (GSG) combined with Cost-Sensitive LightGBM (C...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Mingzhu, Meng, Caihua, Wu, Huawei, Zhu, Hongqiu, Yi, Jiabiao, Tang, Jun, Wang, Yifan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505918/
https://www.ncbi.nlm.nih.gov/pubmed/36146110
http://dx.doi.org/10.3390/s22186763
Descripción
Sumario:Aiming at the problem of class imbalance in the wind turbine blade bolts operation-monitoring dataset, a fault detection method for wind turbine blade bolts based on Gaussian Mixture Model–Synthetic Minority Oversampling Technique–Gaussian Mixture Model (GSG) combined with Cost-Sensitive LightGBM (CS-LightGBM) was proposed. Since it is difficult to obtain the fault samples of blade bolts, the GSG oversampling method was constructed to increase the fault samples in the blade bolt dataset. The method obtains the optimal number of clusters through the BIC criterion, and uses the GMM based on the optimal number of clusters to optimally cluster the fault samples in the blade bolt dataset. According to the density distribution of fault samples in inter-clusters, we synthesized new fault samples using SMOTE in an intra-cluster. This retains the distribution characteristics of the original fault class samples. Then, we used the GMM with the same initial cluster center to cluster the fault class samples that were added to new samples, and removed the synthetic fault class samples that were not clustered into the corresponding clusters. Finally, the synthetic data training set was used to train the CS-LightGBM fault detection model. Additionally, the hyperparameters of CS-LightGBM were optimized by the Bayesian optimization algorithm to obtain the optimal CS-LightGBM fault detection model. The experimental results show that compared with six models including SMOTE-LightGBM, CS-LightGBM, K-means-SMOTE-LightGBM, etc., the proposed fault detection model is superior to the other comparison methods in the false alarm rate, missing alarm rate and F1-score index. The method can well realize the fault detection of large wind turbine blade bolts.