Cargando…

An Alliance of Polynitrogen Heterocycles: Novel Energetic Tetrazinedioxide-Hydroxytetrazole-Based Materials

Energetic materials constitute one of the most important subtypes of functional materials used for various applications. A promising approach for the construction of novel thermally stable high-energy materials is based on an assembly of polynitrogen biheterocyclic scaffolds. Herein, we report on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bystrov, Dmitry M., Pivkina, Alla N., Fershtat, Leonid L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505947/
https://www.ncbi.nlm.nih.gov/pubmed/36144627
http://dx.doi.org/10.3390/molecules27185891
Descripción
Sumario:Energetic materials constitute one of the most important subtypes of functional materials used for various applications. A promising approach for the construction of novel thermally stable high-energy materials is based on an assembly of polynitrogen biheterocyclic scaffolds. Herein, we report on the design and synthesis of a new series of high-nitrogen energetic salts comprising the C-C linked 6-aminotetrazinedioxide and hydroxytetrazole frameworks. Synthesized materials were thoroughly characterized by IR and multinuclear NMR spectroscopy, elemental analysis, single-crystal X-ray diffraction and differential scanning calorimetry. As a result of a vast amount of the formed intra- and intermolecular hydrogen bonds, prepared ammonium and amino-1,2,4-triazolium salts are thermally stable and have good densities of 1.75–1.78 g·cm(−3). All synthesized compounds show high detonation performance, reaching that of benchmark RDX. At the same time, as compared to RDX, investigated salts are less friction sensitive due to the formed net of hydrogen bonds. Overall, reported functional materials represent a novel perspective subclass of secondary explosives and unveil further opportunities for an assembly of biheterocyclic next-generation energetic materials.