Cargando…
New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete
Recently, artificial intelligence (AI) approaches have gained the attention of researchers in the civil engineering field for estimating the mechanical characteristics of concrete to save the effort, time, and cost of researchers. Consequently, the current research focuses on assessing steel-fiber-r...
Autores principales: | Anjum, Madiha, Khan, Kaffayatullah, Ahmad, Waqas, Ahmad, Ayaz, Amin, Muhammad Nasir, Nafees, Afnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505950/ https://www.ncbi.nlm.nih.gov/pubmed/36143573 http://dx.doi.org/10.3390/ma15186261 |
Ejemplares similares
-
Evaluating the Strength and Impact of Raw Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations (SHAP) Methods
por: Alkadhim, Hassan Ali, et al.
Publicado: (2022) -
Exploring kinase family inhibitors and their moiety preferences using deep SHapley additive exPlanations
por: Fan, You-Wei, et al.
Publicado: (2022) -
Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums
por: Lu, Ying, et al.
Publicado: (2023) -
Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations
por: Dong, Sheng, et al.
Publicado: (2022)