Cargando…

Fine-Structural Morphology of the Mouthparts of the Polyphagous Invasive Planthopper, Ricania speculum (Walker) (Hemiptera: Fulgoromorpha: Ricaniidae)

SIMPLE SUMMARY: Mouthparts are the crucial organs for food detection and feeding. Here, the mouthparts of a representative of the planthopper family Ricaniidae are studied and illustrated in detail for the first time and compared to those of other species of plant-feeding Hemiptera. ABSTRACT: Mouthp...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Tiantian, Brożek, Jolanta, Dai, Wu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505962/
https://www.ncbi.nlm.nih.gov/pubmed/36135544
http://dx.doi.org/10.3390/insects13090843
Descripción
Sumario:SIMPLE SUMMARY: Mouthparts are the crucial organs for food detection and feeding. Here, the mouthparts of a representative of the planthopper family Ricaniidae are studied and illustrated in detail for the first time and compared to those of other species of plant-feeding Hemiptera. ABSTRACT: Mouthparts are the crucial sensory and feeding organs associated with food detection and feeding in insects. The Asian ricaniid planthopper Ricania speculum (Walker), recently introduced into Europe, can cause severe economic damage by sucking the phloem sap of tea, camphor, citrus, black locust and other plants using piercing-sucking mouthparts. To facilitate comprehensive understanding of feeding mechanisms in the Ricaniidae, the fine structure of the mouthparts of Ricania speculum was observed by scanning electron microscopy for the first time. The mouthparts are tubular, consist of a cone-shaped labrum, with a wrinkled epidermis and without sensilla; the tubular labium is divided into three segments: a slender stylet fascicle consisting of two mandibular stylets with four ridged processes and a row of longitudinal striations on the distal part of the outer surface; and two maxillary stylets with a smooth and sharp distal part, interlocked to form a larger food canal and a smaller salivary canal. On the labium, 15 kinds of sensilla of different functions were recognized. Two rows of short sensilla basiconica (SB I) are symmetrically distributed along the labial groove on the first segment. Two pairs of long sensilla basiconica (SB II) (proprioceptors) are on both sides of the labial groove at the junction of the second and third segments. A placoid, flattened sensillum (SPF) is symmetrically located laterally on the proximal end of the last segment and several flattened sensilla campaniformia (SFC) were visible on the ventral side on the second and third segments. The distribution of four types (I–IV) of sensilla cheatica of different lengths on the dorsal surface of the labium is significantly denser than on the lateral and ventral surfaces. The labial apex is divided into dorsal and ventral sensory fields, mainly including uniporous long peg sensilla (I), as well as smaller peg sensilla (II) and nonporous peg sensilla (PGSN) on each dorsal field. These nonporous sensilla basiconica (BSN I and III) occur on the ventral sensory fields and are constant in number and distribution. The nonporous sensilla basiconica (BSN II) are symmetrically arranged near the opening of the stylet fascicle similarly to two oval multiporous plate sensilla (OPSM). The sensilla arrangement is slightly different from that observed in previously studied Fulgoromorpha using scanning electron micrographs, which may reflect differences in feeding preference or behavior.