Cargando…

A Novel C-Type Lectin Receptor-Targeted α-Synuclein-Based Parkinson Vaccine Induces Potent Immune Responses and Therapeutic Efficacy in Mice

The progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson’s disease (PD). Immunotherapies, both active and passive, against α-syn have been develope...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidhuber, Sabine, Scheiblhofer, Sandra, Weiss, Richard, Cserepes, Mihály, Tóvári, József, Gadermaier, Gabriele, Bezard, Erwan, De Giorgi, Francesca, Ichas, Francois, Strunk, Dirk, Mandler, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506002/
https://www.ncbi.nlm.nih.gov/pubmed/36146508
http://dx.doi.org/10.3390/vaccines10091432
Descripción
Sumario:The progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson’s disease (PD). Immunotherapies, both active and passive, against α-syn have been developed and are promising novel treatment strategies for such disorders. To increase the potency and specificity of PD vaccination, we created the ‘Win the Skin Immune System Trick’ (WISIT) vaccine platform designed to target skin-resident dendritic cells, inducing superior B and T cell responses. Of the six tested WISIT candidates, all elicited higher immune responses compared to conventional, aluminum adjuvanted peptide-carrier conjugate PD vaccines, in BALB/c mice. WISIT-induced antibodies displayed higher selectivity for α-syn aggregates than those induced by conventional vaccines. Additionally, antibodies induced by two selected candidates were shown to inhibit α-syn aggregation in a dose-dependent manner in vitro. To determine if α-syn fibril formation could also be inhibited in vivo, WISIT candidate type 1 (CW-type 1) was tested in an established synucleinopathy seeding model and demonstrated reduced propagation of synucleinopathy in vivo. Our studies provide proof-of-concept for the efficacy of the WISIT vaccine technology platform and support further preclinical and clinical development of this vaccine candidate.