Cargando…
Comparison of Different Machine Learning Methods for Predicting Cation Exchange Capacity Using Environmental and Remote Sensing Data
This study was conducted to examine the capability of topographic features and remote sensing data in combination with other auxiliary environmental variables (geology and geomorphology) to predict CEC by using different machine learning models ((random forest (RF), k-nearest neighbors (kNNs), Cubis...
Autores principales: | Saidi, Sanaz, Ayoubi, Shamsollah, Shirvani, Mehran, Azizi, Kamran, Zeraatpisheh, Mojtaba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506071/ https://www.ncbi.nlm.nih.gov/pubmed/36146239 http://dx.doi.org/10.3390/s22186890 |
Ejemplares similares
-
Introduction to environmental remote sensing
por: Barrett, Eric C
Publicado: (2013) -
Enhancing Capacity and Stability of Anionic MOFs as Electrode Material by Cation Exchange
por: Akintola, Oluseun, et al.
Publicado: (2022) -
Environmental remote sensing and GIS in Iraq
por: Al-Quraishi, Ayad M Fadhil, et al.
Publicado: (2019) -
Advances in environmental remote sensing : sensors, algorithms, and applications /
Publicado: (2011) -
Remote-Sensing Applications for Environmental Health Research
por: Seltenrich, Nate
Publicado: (2014)