Cargando…
Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel
The effect of target phosphorus (P) content on the precipitates, microstructure, texture, magnetic properties, and mechanical properties of low-carbon (C) and low-silicon (Si) non-oriented electrical steel (NOES) was investigated and the influence mechanism was clarified. The results indicate that t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506072/ https://www.ncbi.nlm.nih.gov/pubmed/36143644 http://dx.doi.org/10.3390/ma15186332 |
_version_ | 1784796631571365888 |
---|---|
author | He, Qinyu Liu, Yulong Zhu, Chengyi Xie, Xiaohui Zhu, Rong Li, Guangqiang |
author_facet | He, Qinyu Liu, Yulong Zhu, Chengyi Xie, Xiaohui Zhu, Rong Li, Guangqiang |
author_sort | He, Qinyu |
collection | PubMed |
description | The effect of target phosphorus (P) content on the precipitates, microstructure, texture, magnetic properties, and mechanical properties of low-carbon (C) and low-silicon (Si) non-oriented electrical steel (NOES) was investigated and the influence mechanism was clarified. The results indicate that the precipitates in the steels are mainly aluminum (Al)-manganese (Mn)-Si-bearing complex nitrides ((Al,Si,Mn)(x)N(y)) and P-bearing complex nitrides ((Al,Si,Mn)(x)N(y)-P). Increasing target phosphorus content in the steels decreases (Al,Si,Mn)(x)N(y), and increases (Al,Si,Mn)(x)N(y)-P. The number density of the precipitates is the lowest, and the average size of the precipitates and grain size of the finished steel is the largest in the samples with target P content at the 0.14% level (0.14%P-targeted). The average grain size and microstructure homogeneity of the steels are influenced by the addition of phosphorus. The content of the {111}<112> component decreases, and the favorable texture increases after phosphorus is added to the steel. The magnetic induction of the steel is improved. Grain refinement and microstructure inhomogeneity lead to an iron loss increase after target phosphorus content increases in the steel. The best magnetic induction B(50) is 1.765 T in the 0.14%P-targeted samples. The tensile strength and yield strength are improved owing to solid solution strengthening and the grain refinement effect of phosphorus added to the steels. |
format | Online Article Text |
id | pubmed-9506072 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95060722022-09-24 Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel He, Qinyu Liu, Yulong Zhu, Chengyi Xie, Xiaohui Zhu, Rong Li, Guangqiang Materials (Basel) Article The effect of target phosphorus (P) content on the precipitates, microstructure, texture, magnetic properties, and mechanical properties of low-carbon (C) and low-silicon (Si) non-oriented electrical steel (NOES) was investigated and the influence mechanism was clarified. The results indicate that the precipitates in the steels are mainly aluminum (Al)-manganese (Mn)-Si-bearing complex nitrides ((Al,Si,Mn)(x)N(y)) and P-bearing complex nitrides ((Al,Si,Mn)(x)N(y)-P). Increasing target phosphorus content in the steels decreases (Al,Si,Mn)(x)N(y), and increases (Al,Si,Mn)(x)N(y)-P. The number density of the precipitates is the lowest, and the average size of the precipitates and grain size of the finished steel is the largest in the samples with target P content at the 0.14% level (0.14%P-targeted). The average grain size and microstructure homogeneity of the steels are influenced by the addition of phosphorus. The content of the {111}<112> component decreases, and the favorable texture increases after phosphorus is added to the steel. The magnetic induction of the steel is improved. Grain refinement and microstructure inhomogeneity lead to an iron loss increase after target phosphorus content increases in the steel. The best magnetic induction B(50) is 1.765 T in the 0.14%P-targeted samples. The tensile strength and yield strength are improved owing to solid solution strengthening and the grain refinement effect of phosphorus added to the steels. MDPI 2022-09-13 /pmc/articles/PMC9506072/ /pubmed/36143644 http://dx.doi.org/10.3390/ma15186332 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article He, Qinyu Liu, Yulong Zhu, Chengyi Xie, Xiaohui Zhu, Rong Li, Guangqiang Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel |
title | Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel |
title_full | Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel |
title_fullStr | Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel |
title_full_unstemmed | Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel |
title_short | Effect of Phosphorus Content on Magnetic and Mechanical Properties of Non-Oriented Electrical Steel |
title_sort | effect of phosphorus content on magnetic and mechanical properties of non-oriented electrical steel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506072/ https://www.ncbi.nlm.nih.gov/pubmed/36143644 http://dx.doi.org/10.3390/ma15186332 |
work_keys_str_mv | AT heqinyu effectofphosphoruscontentonmagneticandmechanicalpropertiesofnonorientedelectricalsteel AT liuyulong effectofphosphoruscontentonmagneticandmechanicalpropertiesofnonorientedelectricalsteel AT zhuchengyi effectofphosphoruscontentonmagneticandmechanicalpropertiesofnonorientedelectricalsteel AT xiexiaohui effectofphosphoruscontentonmagneticandmechanicalpropertiesofnonorientedelectricalsteel AT zhurong effectofphosphoruscontentonmagneticandmechanicalpropertiesofnonorientedelectricalsteel AT liguangqiang effectofphosphoruscontentonmagneticandmechanicalpropertiesofnonorientedelectricalsteel |