Cargando…

A Simple Technique for the Precise Establishment of the Working Gap in an Electrochemical Discharge Machining Process and Some Experimental Results Thereof

The working gap (Wg) between a tooltip and a substrate surface is a critical process parameter affecting the quality metrics and precision of microstructures fabricated using an electrochemical discharge machining (ECDM) process. Despite the extensive investigation carried out on ECDM processes for...

Descripción completa

Detalles Bibliográficos
Autores principales: Sambathkumar, Saranya, Arunagirinathan, Ravi Sankar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506080/
https://www.ncbi.nlm.nih.gov/pubmed/36143990
http://dx.doi.org/10.3390/mi13091367
Descripción
Sumario:The working gap (Wg) between a tooltip and a substrate surface is a critical process parameter affecting the quality metrics and precision of microstructures fabricated using an electrochemical discharge machining (ECDM) process. Despite the extensive investigation carried out on ECDM processes for the last several years, only a few researchers have explicitly explained the technique used to establish the Wg. In the present work, the authors propose a simple, cost-effective technique using a commercially available metallic feeler gauge and a multimeter to precisely establish a Wg in an ECDM process. A systematic experimental investigation was carried out using the proposed method to study the influence of Wg on the quality metrics such as the depth, width, edge linearity, heat-affected zone, and surface finish of fabricated microstructures on a glass substrate. Experimental results revealed that even a 2 µm difference in Wg significantly influenced the quality and quantity metrics of an ECDM process. It was observed that no machining occurred beyond a W(g) of 25 µm even when a TTR as low as 0.5 mm/min and an applied voltage greater than 44 V were used. A micro-channel with improved quality metrics was obtained using a tool travel rate (TTR) of 1 mm/min with an applied voltage of 33 V and a Wg of 2 µm while using 30% NaOH as an electrolyte. The proposed method would be helpful for researchers to fabricate precise micro-channels on glass substrates using ECDM processes.