Cargando…

Cell-Type-Specific Profiling of the Arabidopsis thaliana Membrane Protein-Encoding Genes

Membrane proteins work in large complexes to perceive and transduce external signals and to trigger a cellular response leading to the adaptation of the cells to their environment. Biochemical assays have been extensively used to reveal the interaction between membrane proteins. However, such analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Cervantes-Pérez, Sergio Alan, Libault, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506093/
https://www.ncbi.nlm.nih.gov/pubmed/36135893
http://dx.doi.org/10.3390/membranes12090874
Descripción
Sumario:Membrane proteins work in large complexes to perceive and transduce external signals and to trigger a cellular response leading to the adaptation of the cells to their environment. Biochemical assays have been extensively used to reveal the interaction between membrane proteins. However, such analyses do not reveal the unique and complex composition of the membrane proteins of the different plant cell types. Here, we conducted a comprehensive analysis of the expression of Arabidopsis membrane proteins in the different cell types composing the root. Specifically, we analyzed the expression of genes encoding membrane proteins interacting in large complexes. We found that the transcriptional profiles of membrane protein-encoding genes differ between Arabidopsis root cell types. This result suggests that different cell types are characterized by specific sets of plasma membrane proteins, which are likely a reflection of their unique biological functions and interactions. To further explore the complexity of the Arabidopsis root cell membrane proteomes, we conducted a co-expression analysis of genes encoding interacting membrane proteins. This study confirmed previously reported interactions between membrane proteins, suggesting that the co-expression of genes at the single cell-type level can be used to support protein network predictions.