Cargando…
A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion capture system. However, a comprehensive analysis of its upper-body motion capture accuracy is still lacking, before it is being applied to biomechanical research. Therefore, this study first evaluated the validit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506133/ https://www.ncbi.nlm.nih.gov/pubmed/36146301 http://dx.doi.org/10.3390/s22186954 |
_version_ | 1784796646933004288 |
---|---|
author | Wu, Yiwei Tao, Kuan Chen, Qi Tian, Yinsheng Sun, Lixin |
author_facet | Wu, Yiwei Tao, Kuan Chen, Qi Tian, Yinsheng Sun, Lixin |
author_sort | Wu, Yiwei |
collection | PubMed |
description | The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion capture system. However, a comprehensive analysis of its upper-body motion capture accuracy is still lacking, before it is being applied to biomechanical research. Therefore, this study first evaluated the validity and reliability of this system in upper-body capturing and then quantified the system’s accuracy for different task complexities and movement speeds. Seven participants performed simple (eight single-DOF upper-body movements) and complex tasks (lifting a 2.5 kg box over the shoulder) at fast and slow speeds with the PNS and OptiTrack (gold-standard optical system) collecting kinematics data simultaneously. Statistical metrics such as CMC, RMSE, Pearson’s r, R(2), and Bland–Altman analysis were utilized to assess the similarity between the two systems. Test–retest reliability included intra- and intersession relations, which were assessed by the intraclass correlation coefficient (ICC) as well as CMC. All upper-body kinematics were highly consistent between the two systems, with CMC values 0.73–0.99, RMSE 1.9–12.5°, Pearson’s r 0.84–0.99, R(2) 0.75–0.99, and Bland–Altman analysis demonstrating a bias of 0.2–27.8° as well as all the points within 95% limits of agreement (LOA). The relative reliability of intra- and intersessions was good to excellent (i.e., ICC and CMC were 0.77–0.99 and 0.75–0.98, respectively). The paired t-test revealed that faster speeds resulted in greater bias, while more complex tasks led to lower consistencies. Our results showed that the PNS could provide accurate enough upper-body kinematics for further biomechanical performance analysis. |
format | Online Article Text |
id | pubmed-9506133 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95061332022-09-24 A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture Wu, Yiwei Tao, Kuan Chen, Qi Tian, Yinsheng Sun, Lixin Sensors (Basel) Article The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion capture system. However, a comprehensive analysis of its upper-body motion capture accuracy is still lacking, before it is being applied to biomechanical research. Therefore, this study first evaluated the validity and reliability of this system in upper-body capturing and then quantified the system’s accuracy for different task complexities and movement speeds. Seven participants performed simple (eight single-DOF upper-body movements) and complex tasks (lifting a 2.5 kg box over the shoulder) at fast and slow speeds with the PNS and OptiTrack (gold-standard optical system) collecting kinematics data simultaneously. Statistical metrics such as CMC, RMSE, Pearson’s r, R(2), and Bland–Altman analysis were utilized to assess the similarity between the two systems. Test–retest reliability included intra- and intersession relations, which were assessed by the intraclass correlation coefficient (ICC) as well as CMC. All upper-body kinematics were highly consistent between the two systems, with CMC values 0.73–0.99, RMSE 1.9–12.5°, Pearson’s r 0.84–0.99, R(2) 0.75–0.99, and Bland–Altman analysis demonstrating a bias of 0.2–27.8° as well as all the points within 95% limits of agreement (LOA). The relative reliability of intra- and intersessions was good to excellent (i.e., ICC and CMC were 0.77–0.99 and 0.75–0.98, respectively). The paired t-test revealed that faster speeds resulted in greater bias, while more complex tasks led to lower consistencies. Our results showed that the PNS could provide accurate enough upper-body kinematics for further biomechanical performance analysis. MDPI 2022-09-14 /pmc/articles/PMC9506133/ /pubmed/36146301 http://dx.doi.org/10.3390/s22186954 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Yiwei Tao, Kuan Chen, Qi Tian, Yinsheng Sun, Lixin A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture |
title | A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture |
title_full | A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture |
title_fullStr | A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture |
title_full_unstemmed | A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture |
title_short | A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture |
title_sort | comprehensive analysis of the validity and reliability of the perception neuron studio for upper-body motion capture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506133/ https://www.ncbi.nlm.nih.gov/pubmed/36146301 http://dx.doi.org/10.3390/s22186954 |
work_keys_str_mv | AT wuyiwei acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT taokuan acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT chenqi acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT tianyinsheng acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT sunlixin acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT wuyiwei comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT taokuan comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT chenqi comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT tianyinsheng comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture AT sunlixin comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture |