Cargando…

A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture

The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion capture system. However, a comprehensive analysis of its upper-body motion capture accuracy is still lacking, before it is being applied to biomechanical research. Therefore, this study first evaluated the validit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yiwei, Tao, Kuan, Chen, Qi, Tian, Yinsheng, Sun, Lixin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506133/
https://www.ncbi.nlm.nih.gov/pubmed/36146301
http://dx.doi.org/10.3390/s22186954
_version_ 1784796646933004288
author Wu, Yiwei
Tao, Kuan
Chen, Qi
Tian, Yinsheng
Sun, Lixin
author_facet Wu, Yiwei
Tao, Kuan
Chen, Qi
Tian, Yinsheng
Sun, Lixin
author_sort Wu, Yiwei
collection PubMed
description The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion capture system. However, a comprehensive analysis of its upper-body motion capture accuracy is still lacking, before it is being applied to biomechanical research. Therefore, this study first evaluated the validity and reliability of this system in upper-body capturing and then quantified the system’s accuracy for different task complexities and movement speeds. Seven participants performed simple (eight single-DOF upper-body movements) and complex tasks (lifting a 2.5 kg box over the shoulder) at fast and slow speeds with the PNS and OptiTrack (gold-standard optical system) collecting kinematics data simultaneously. Statistical metrics such as CMC, RMSE, Pearson’s r, R(2), and Bland–Altman analysis were utilized to assess the similarity between the two systems. Test–retest reliability included intra- and intersession relations, which were assessed by the intraclass correlation coefficient (ICC) as well as CMC. All upper-body kinematics were highly consistent between the two systems, with CMC values 0.73–0.99, RMSE 1.9–12.5°, Pearson’s r 0.84–0.99, R(2) 0.75–0.99, and Bland–Altman analysis demonstrating a bias of 0.2–27.8° as well as all the points within 95% limits of agreement (LOA). The relative reliability of intra- and intersessions was good to excellent (i.e., ICC and CMC were 0.77–0.99 and 0.75–0.98, respectively). The paired t-test revealed that faster speeds resulted in greater bias, while more complex tasks led to lower consistencies. Our results showed that the PNS could provide accurate enough upper-body kinematics for further biomechanical performance analysis.
format Online
Article
Text
id pubmed-9506133
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95061332022-09-24 A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture Wu, Yiwei Tao, Kuan Chen, Qi Tian, Yinsheng Sun, Lixin Sensors (Basel) Article The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion capture system. However, a comprehensive analysis of its upper-body motion capture accuracy is still lacking, before it is being applied to biomechanical research. Therefore, this study first evaluated the validity and reliability of this system in upper-body capturing and then quantified the system’s accuracy for different task complexities and movement speeds. Seven participants performed simple (eight single-DOF upper-body movements) and complex tasks (lifting a 2.5 kg box over the shoulder) at fast and slow speeds with the PNS and OptiTrack (gold-standard optical system) collecting kinematics data simultaneously. Statistical metrics such as CMC, RMSE, Pearson’s r, R(2), and Bland–Altman analysis were utilized to assess the similarity between the two systems. Test–retest reliability included intra- and intersession relations, which were assessed by the intraclass correlation coefficient (ICC) as well as CMC. All upper-body kinematics were highly consistent between the two systems, with CMC values 0.73–0.99, RMSE 1.9–12.5°, Pearson’s r 0.84–0.99, R(2) 0.75–0.99, and Bland–Altman analysis demonstrating a bias of 0.2–27.8° as well as all the points within 95% limits of agreement (LOA). The relative reliability of intra- and intersessions was good to excellent (i.e., ICC and CMC were 0.77–0.99 and 0.75–0.98, respectively). The paired t-test revealed that faster speeds resulted in greater bias, while more complex tasks led to lower consistencies. Our results showed that the PNS could provide accurate enough upper-body kinematics for further biomechanical performance analysis. MDPI 2022-09-14 /pmc/articles/PMC9506133/ /pubmed/36146301 http://dx.doi.org/10.3390/s22186954 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wu, Yiwei
Tao, Kuan
Chen, Qi
Tian, Yinsheng
Sun, Lixin
A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
title A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
title_full A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
title_fullStr A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
title_full_unstemmed A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
title_short A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture
title_sort comprehensive analysis of the validity and reliability of the perception neuron studio for upper-body motion capture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506133/
https://www.ncbi.nlm.nih.gov/pubmed/36146301
http://dx.doi.org/10.3390/s22186954
work_keys_str_mv AT wuyiwei acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT taokuan acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT chenqi acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT tianyinsheng acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT sunlixin acomprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT wuyiwei comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT taokuan comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT chenqi comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT tianyinsheng comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture
AT sunlixin comprehensiveanalysisofthevalidityandreliabilityoftheperceptionneuronstudioforupperbodymotioncapture