Cargando…
Disease Modeling with Kidney Organoids
Kidney diseases often lack optimal treatments, causing millions of deaths each year. Thus, developing appropriate model systems to study human kidney disease is of utmost importance. Some of the most promising human kidney models are organoids or small organ-resembling tissue collectives, derived fr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506184/ https://www.ncbi.nlm.nih.gov/pubmed/36144007 http://dx.doi.org/10.3390/mi13091384 |
Sumario: | Kidney diseases often lack optimal treatments, causing millions of deaths each year. Thus, developing appropriate model systems to study human kidney disease is of utmost importance. Some of the most promising human kidney models are organoids or small organ-resembling tissue collectives, derived from human-induced pluripotent stem cells (hiPSCs). However, they are more akin to a first-trimester fetal kidney than an adult kidney. Therefore, new strategies are needed to advance their maturity. They have great potential for disease modeling and eventually auxiliary therapy if they can reach the maturity of an adult kidney. In this review, we will discuss the current state of kidney organoids in terms of their similarity to the human kidney and use as a disease modeling system thus far. We will then discuss potential pathways to advance the maturity of kidney organoids to match an adult kidney for more accurate human disease modeling. |
---|