Cargando…
Towards Robustifying Image Classifiers against the Perils of Adversarial Attacks on Artificial Intelligence Systems
Adversarial machine learning (AML) is a class of data manipulation techniques that cause alterations in the behavior of artificial intelligence (AI) systems while going unnoticed by humans. These alterations can cause serious vulnerabilities to mission-critical AI-enabled applications. This work int...
Autores principales: | Anastasiou, Theodora, Karagiorgou, Sophia, Petrou, Petros, Papamartzivanos, Dimitrios, Giannetsos, Thanassis, Tsirigotaki, Georgia, Keizer, Jelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506202/ https://www.ncbi.nlm.nih.gov/pubmed/36146258 http://dx.doi.org/10.3390/s22186905 |
Ejemplares similares
-
Robustifying Vector Median Filter
por: Morillas, Samuel, et al.
Publicado: (2011) -
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
por: de Prado, Miguel, et al.
Publicado: (2021) -
Preprocessing Pipelines including Block-Matching Convolutional Neural Network for Image Denoising to Robustify Deep Reidentification against Evasion Attacks
por: Pawlicki, Marek, et al.
Publicado: (2021) -
Robustifying Experimental Tracer Design for(13)C-Metabolic Flux Analysis
por: Beyß, Martin, et al.
Publicado: (2021) -
Defending against adversarial attacks on Covid-19 classifier: A denoiser-based approach
por: Kansal, Keshav, et al.
Publicado: (2022)