Cargando…
Learning Gait Representations with Noisy Multi-Task Learning
Gait analysis is proven to be a reliable way to perform person identification without relying on subject cooperation. Walking is a biometric that does not significantly change in short periods of time and can be regarded as unique to each person. So far, the study of gait analysis focused mostly on...
Autores principales: | Cosma, Adrian, Radoi, Emilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506362/ https://www.ncbi.nlm.nih.gov/pubmed/36146152 http://dx.doi.org/10.3390/s22186803 |
Ejemplares similares
-
WildGait: Learning Gait Representations from Raw Surveillance Streams
por: Cosma, Adrian, et al.
Publicado: (2021) -
Exploring Self-Supervised Vision Transformers for Gait Recognition in the Wild
por: Cosma, Adrian, et al.
Publicado: (2023) -
Multi-Task Network Representation Learning
por: Xie, Yu, et al.
Publicado: (2020) -
A Multi-Task Representation Learning Architecture for Enhanced Graph Classification
por: Xie, Yu, et al.
Publicado: (2020) -
Task-dependent optimal representations for cerebellar learning
por: Xie, Marjorie, et al.
Publicado: (2023)