Cargando…
Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition
Attention is a complex cognitive process with innate resource management and information selection capabilities for maintaining a certain level of functional awareness in socio-cognitive service agents. The human-machine society depends on creating illusionary believable behaviors. These behaviors i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506380/ https://www.ncbi.nlm.nih.gov/pubmed/36146347 http://dx.doi.org/10.3390/s22187002 |
_version_ | 1784796708919574528 |
---|---|
author | Kanwal, Asma Abbas, Sagheer Ghazal, Taher M. Ditta, Allah Alquhayz, Hani Khan, Muhammad Adnan |
author_facet | Kanwal, Asma Abbas, Sagheer Ghazal, Taher M. Ditta, Allah Alquhayz, Hani Khan, Muhammad Adnan |
author_sort | Kanwal, Asma |
collection | PubMed |
description | Attention is a complex cognitive process with innate resource management and information selection capabilities for maintaining a certain level of functional awareness in socio-cognitive service agents. The human-machine society depends on creating illusionary believable behaviors. These behaviors include processing sensory information based on contextual adaptation and focusing on specific aspects. The cognitive processes based on selective attention help the agent to efficiently utilize its computational resources by scheduling its intellectual tasks, which are not limited to decision-making, goal planning, action selection, and execution of actions. This study reports ongoing work on developing a cognitive architectural framework, a Nature-inspired Humanoid Cognitive Computing Platform for Self-aware and Conscious Agents (NiHA). The NiHA comprises cognitive theories, frameworks, and applications within machine consciousness (MC) and artificial general intelligence (AGI). The paper is focused on top-down and bottom-up attention mechanisms for service agents as a step towards machine consciousness. This study evaluates the behavioral impact of psychophysical states on attention. The proposed agent attains almost 90% accuracy in attention generation. In social interaction, contextual-based working is important, and the agent attains 89% accuracy in its attention by adding and checking the effect of psychophysical states on parallel selective attention. The addition of the emotions to attention process produced more contextual-based responses. |
format | Online Article Text |
id | pubmed-9506380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95063802022-09-24 Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition Kanwal, Asma Abbas, Sagheer Ghazal, Taher M. Ditta, Allah Alquhayz, Hani Khan, Muhammad Adnan Sensors (Basel) Article Attention is a complex cognitive process with innate resource management and information selection capabilities for maintaining a certain level of functional awareness in socio-cognitive service agents. The human-machine society depends on creating illusionary believable behaviors. These behaviors include processing sensory information based on contextual adaptation and focusing on specific aspects. The cognitive processes based on selective attention help the agent to efficiently utilize its computational resources by scheduling its intellectual tasks, which are not limited to decision-making, goal planning, action selection, and execution of actions. This study reports ongoing work on developing a cognitive architectural framework, a Nature-inspired Humanoid Cognitive Computing Platform for Self-aware and Conscious Agents (NiHA). The NiHA comprises cognitive theories, frameworks, and applications within machine consciousness (MC) and artificial general intelligence (AGI). The paper is focused on top-down and bottom-up attention mechanisms for service agents as a step towards machine consciousness. This study evaluates the behavioral impact of psychophysical states on attention. The proposed agent attains almost 90% accuracy in attention generation. In social interaction, contextual-based working is important, and the agent attains 89% accuracy in its attention by adding and checking the effect of psychophysical states on parallel selective attention. The addition of the emotions to attention process produced more contextual-based responses. MDPI 2022-09-15 /pmc/articles/PMC9506380/ /pubmed/36146347 http://dx.doi.org/10.3390/s22187002 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kanwal, Asma Abbas, Sagheer Ghazal, Taher M. Ditta, Allah Alquhayz, Hani Khan, Muhammad Adnan Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition |
title | Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition |
title_full | Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition |
title_fullStr | Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition |
title_full_unstemmed | Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition |
title_short | Towards Parallel Selective Attention Using Psychophysiological States as the Basis for Functional Cognition |
title_sort | towards parallel selective attention using psychophysiological states as the basis for functional cognition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506380/ https://www.ncbi.nlm.nih.gov/pubmed/36146347 http://dx.doi.org/10.3390/s22187002 |
work_keys_str_mv | AT kanwalasma towardsparallelselectiveattentionusingpsychophysiologicalstatesasthebasisforfunctionalcognition AT abbassagheer towardsparallelselectiveattentionusingpsychophysiologicalstatesasthebasisforfunctionalcognition AT ghazaltaherm towardsparallelselectiveattentionusingpsychophysiologicalstatesasthebasisforfunctionalcognition AT dittaallah towardsparallelselectiveattentionusingpsychophysiologicalstatesasthebasisforfunctionalcognition AT alquhayzhani towardsparallelselectiveattentionusingpsychophysiologicalstatesasthebasisforfunctionalcognition AT khanmuhammadadnan towardsparallelselectiveattentionusingpsychophysiologicalstatesasthebasisforfunctionalcognition |