Cargando…
Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-ray Radiography
Globally, coal remains one of the natural resources that provide power to the world. Thousands of people are involved in coal collection, processing, and transportation. Particulate coal dust is produced during these processes, which can crush the lung structure of workers and cause pneumoconiosis....
Autores principales: | Devnath, Liton, Luo, Suhuai, Summons, Peter, Wang, Dadong, Shaukat, Kamran, Hameed, Ibrahim A., Alrayes, Fatma S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506413/ https://www.ncbi.nlm.nih.gov/pubmed/36142989 http://dx.doi.org/10.3390/jcm11185342 |
Ejemplares similares
-
Computer-Aided Diagnosis of Coal Workers’ Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review
por: Devnath, Liton, et al.
Publicado: (2022) -
Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-rays
por: Devnath, Liton, et al.
Publicado: (2022) -
Silicosis and coal workers' pneumoconiosis.
por: Castranova, V, et al.
Publicado: (2000) -
Prevalence and pathogenesis of pneumoconiosis in coal workers.
por: Heppleston, A G
Publicado: (1988) -
Use data augmentation for a deep learning classification model with chest X-ray clinical imaging featuring coal workers' pneumoconiosis
por: Dong, Hantian, et al.
Publicado: (2022)