Cargando…

Void-Induced Ductile Fracture of Metals: Experimental Observations

The paper presents a literature review on the development of microvoids in metals, leading to ductile fracture associated with plastic deformation, without taking into account the cleavage mechanism. Particular emphasis was placed on the results of observations and experimental studies of the charac...

Descripción completa

Detalles Bibliográficos
Autores principales: Wciślik, Wiktor, Lipiec, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506433/
https://www.ncbi.nlm.nih.gov/pubmed/36143784
http://dx.doi.org/10.3390/ma15186473
Descripción
Sumario:The paper presents a literature review on the development of microvoids in metals, leading to ductile fracture associated with plastic deformation, without taking into account the cleavage mechanism. Particular emphasis was placed on the results of observations and experimental studies of the characteristics of the phenomenon itself, without in-depth analysis in the field of widely used FEM modelling. The mechanism of void development as a fracture mechanism is presented. Observations of the nucleation of voids in metals from the turn of the 1950s and 1960s to the present day were described. The nucleation mechanisms related to the defects of the crystal lattice as well as those resulting from the presence of second-phase particles were characterised. Observations of the growth and coalescence of voids were presented, along with the basic models of both phenomena. The modern research methods used to analyse changes in the microstructure of the material during plastic deformation are discussed. In summary, it was indicated that understanding the microstructural phenomena occurring in deformed material enables the engineering of the modelling of plastic fracture in metals.