Cargando…
Improving Chemical Reaction Prediction with Unlabeled Data
Predicting products of organic chemical reactions is useful in chemical sciences, especially when one or more reactants are new organics. However, the performance of traditional learning models heavily relies on high-quality labeled data. In this work, to utilize unlabeled data for better prediction...
Autores principales: | Xie, Yu, Zhang, Yuyang, Wong, Ka-Chun, Shi, Meixia, Peng, Chengbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506495/ https://www.ncbi.nlm.nih.gov/pubmed/36144703 http://dx.doi.org/10.3390/molecules27185967 |
Ejemplares similares
-
Gene function prediction using labeled and unlabeled data
por: Zhao, Xing-Ming, et al.
Publicado: (2008) -
A Block-Based Adaptive Decoupling Framework for Graph Neural Networks
por: Shen, Xu, et al.
Publicado: (2022) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016) -
Collective Human Mobility Pattern from Taxi Trips in Urban Area
por: Peng, Chengbin, et al.
Publicado: (2012) -
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
por: Mourad, Raphaël
Publicado: (2023)