Cargando…
A Deep Sequence Learning Framework for Action Recognition in Small-Scale Depth Video Dataset
Depth video sequence-based deep models for recognizing human actions are scarce compared to RGB and skeleton video sequences-based models. This scarcity limits the research advancements based on depth data, as training deep models with small-scale data is challenging. In this work, we propose a sequ...
Autores principales: | Bulbul, Mohammad Farhad, Ullah, Amin, Ali, Hazrat, Kim, Daijin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506565/ https://www.ncbi.nlm.nih.gov/pubmed/36146186 http://dx.doi.org/10.3390/s22186841 |
Ejemplares similares
-
Exploring 3D Human Action Recognition Using STACOG on Multi-View Depth Motion Maps Sequences
por: Bulbul, Mohammad Farhad, et al.
Publicado: (2021) -
A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments
por: Jalal, Ahmad, et al.
Publicado: (2014) -
An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
por: Ullah, Waseem, et al.
Publicado: (2021) -
An Efficient Human Instance-Guided Framework for Video Action Recognition
por: Lee, Inwoong, et al.
Publicado: (2021) -
Urdu text in natural scene images: a new dataset and preliminary text detection
por: Ali, Hazrat, et al.
Publicado: (2021)