Cargando…
Machine learning for cell type classification from single nucleus RNA sequencing data
With the advent of single cell/nucleus RNA sequencing (sc/snRNA-seq), the field of cell phenotyping is now a data-driven exercise providing statistical evidence to support cell type/state categorization. However, the task of classifying cells into specific, well-defined categories with the empirical...
Autores principales: | Le, Huy, Peng, Beverly, Uy, Janelle, Carrillo, Daniel, Zhang, Yun, Aevermann, Brian D., Scheuermann, Richard H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506651/ https://www.ncbi.nlm.nih.gov/pubmed/36149937 http://dx.doi.org/10.1371/journal.pone.0275070 |
Ejemplares similares
-
Cell type matching in single-cell RNA-sequencing data using FR-Match
por: Zhang, Yun, et al.
Publicado: (2022) -
A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing
por: Aevermann, Brian, et al.
Publicado: (2021) -
FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test
por: Zhang, Yun, et al.
Publicado: (2020) -
Single-Cell Classification Based on Population Nucleus Size Combining Microwave Impedance Spectroscopy and Machine Learning
por: Ferguson, Caroline A., et al.
Publicado: (2023) -
Machine learning for pan-cancer classification based on RNA sequencing data
por: Štancl, Paula, et al.
Publicado: (2023)