Cargando…
Use of machine learning to examine disparities in completion of substance use disorder treatment
The objective of this work is to examine disparities in the completion of substance use disorder treatment in the U.S. Our data is from the Treatment Episode Dataset Discharge (TEDS-D) datasets from the U.S. Substance Abuse and Mental Health Services Administration (SAMHSA) for 2017–2019. We apply a...
Autores principales: | Baird, Aaron, Cheng, Yichen, Xia, Yusen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506659/ https://www.ncbi.nlm.nih.gov/pubmed/36149868 http://dx.doi.org/10.1371/journal.pone.0275054 |
Ejemplares similares
-
Determinants of outpatient substance use disorder treatment length-of-stay and completion: the case of a treatment program in the southeast U.S
por: Baird, Aaron, et al.
Publicado: (2023) -
Consumer perceptions of telehealth for mental health or substance abuse: a Twitter-based topic modeling analysis
por: Baird, Aaron, et al.
Publicado: (2022) -
Telehealth Adoption and Discontinuation by US Hospitals: Results From 2 Quasi-Natural Experiments
por: Baird, Aaron, et al.
Publicado: (2022) -
Racial Disparities in Substance Use Treatment Completion Among Older Adults
por: Suntai, Zainab D, et al.
Publicado: (2020) -
Use of a machine learning framework to predict substance use disorder treatment success
por: Acion, Laura, et al.
Publicado: (2017)