Cargando…

Feedback control of social distancing for COVID-19 via elementary formulae

Social distancing has been enacted in order to mitigate the spread of COVID-19. Like many authors, we adopt the classic epidemic SIR model, where the infection rate is the control variable. Its differential flatness property yields elementary closed-form formulae for open-loop social distancing scen...

Descripción completa

Detalles Bibliográficos
Autores principales: Fliess, Michel, Join, Cédric, d'Onofrio, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: , IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507116/
http://dx.doi.org/10.1016/j.ifacol.2022.09.134
Descripción
Sumario:Social distancing has been enacted in order to mitigate the spread of COVID-19. Like many authors, we adopt the classic epidemic SIR model, where the infection rate is the control variable. Its differential flatness property yields elementary closed-form formulae for open-loop social distancing scenarios, where, for instance, the increase of the number of uninfected people may be taken into account. Those formulae might therefore be useful to decision makers. A feedback loop stemming from model-free control leads to a remarkable robustness with respect to severe uncertainties and mismatches. Although an identification procedure is presented, a good knowledge of the recovery rate is not necessary for our control strategy.