Cargando…
Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution
Exploring low cost, highly active, and durable electrocatalysts for oxygen evolution reaction (OER) is of prime importance to boost energy conversion efficiency. Perovskite fluorides are emerging as alternative electrocatalysts for OER, however, their intrinsically active sites during real operation...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507342/ https://www.ncbi.nlm.nih.gov/pubmed/35869034 http://dx.doi.org/10.1002/advs.202201916 |
_version_ | 1784796853679685632 |
---|---|
author | Zhang, Jing Ye, Yu Wang, Zhenbin Xu, Yin Gui, Liangqi He, Beibei Zhao, Ling |
author_facet | Zhang, Jing Ye, Yu Wang, Zhenbin Xu, Yin Gui, Liangqi He, Beibei Zhao, Ling |
author_sort | Zhang, Jing |
collection | PubMed |
description | Exploring low cost, highly active, and durable electrocatalysts for oxygen evolution reaction (OER) is of prime importance to boost energy conversion efficiency. Perovskite fluorides are emerging as alternative electrocatalysts for OER, however, their intrinsically active sites during real operation are still elusive. Herein, the self‐reconstruction on newly designed Ni—Fe coupled perovskite fluorides during OER process is demonstrated. In situ Raman spectroscopy, ex situ X‐ray absorption spectroscopy, and theoretical calculation reveal that Fe incorporation can significantly activate the self‐reconstruction of perovskite fluorides and efficiently lower the energy barrier of OER. Benefiting from self‐reconstruction and low energy barrier, the KNi(0.8)Fe(0.2)F(3)@nickel foam (KNFF2@NF) electrocatalyst delivers an ultralow overpotential of 258 mV to afford 100 mA cm(−2) and an excellent durability for 100 h, favorably rivaling most the state‐of‐the‐art OER electrocatalysts. This protocol provides the fundamental understanding on OER mechanism associated with surface reconstruction for perovskite fluorides. |
format | Online Article Text |
id | pubmed-9507342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95073422022-09-30 Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution Zhang, Jing Ye, Yu Wang, Zhenbin Xu, Yin Gui, Liangqi He, Beibei Zhao, Ling Adv Sci (Weinh) Research Articles Exploring low cost, highly active, and durable electrocatalysts for oxygen evolution reaction (OER) is of prime importance to boost energy conversion efficiency. Perovskite fluorides are emerging as alternative electrocatalysts for OER, however, their intrinsically active sites during real operation are still elusive. Herein, the self‐reconstruction on newly designed Ni—Fe coupled perovskite fluorides during OER process is demonstrated. In situ Raman spectroscopy, ex situ X‐ray absorption spectroscopy, and theoretical calculation reveal that Fe incorporation can significantly activate the self‐reconstruction of perovskite fluorides and efficiently lower the energy barrier of OER. Benefiting from self‐reconstruction and low energy barrier, the KNi(0.8)Fe(0.2)F(3)@nickel foam (KNFF2@NF) electrocatalyst delivers an ultralow overpotential of 258 mV to afford 100 mA cm(−2) and an excellent durability for 100 h, favorably rivaling most the state‐of‐the‐art OER electrocatalysts. This protocol provides the fundamental understanding on OER mechanism associated with surface reconstruction for perovskite fluorides. John Wiley and Sons Inc. 2022-07-22 /pmc/articles/PMC9507342/ /pubmed/35869034 http://dx.doi.org/10.1002/advs.202201916 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhang, Jing Ye, Yu Wang, Zhenbin Xu, Yin Gui, Liangqi He, Beibei Zhao, Ling Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution |
title | Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution |
title_full | Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution |
title_fullStr | Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution |
title_full_unstemmed | Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution |
title_short | Probing Dynamic Self‐Reconstruction on Perovskite Fluorides toward Ultrafast Oxygen Evolution |
title_sort | probing dynamic self‐reconstruction on perovskite fluorides toward ultrafast oxygen evolution |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507342/ https://www.ncbi.nlm.nih.gov/pubmed/35869034 http://dx.doi.org/10.1002/advs.202201916 |
work_keys_str_mv | AT zhangjing probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution AT yeyu probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution AT wangzhenbin probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution AT xuyin probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution AT guiliangqi probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution AT hebeibei probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution AT zhaoling probingdynamicselfreconstructiononperovskitefluoridestowardultrafastoxygenevolution |