Cargando…
Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019
BACKGROUND: Antibiotic resistance is a global public health problem, leading to high mortality and treatment costs. To achieve more efficient treatment protocols and better patient recovery, the distribution and drug resistance of pathogens in our hospital were investigated, allowing significant cli...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507740/ https://www.ncbi.nlm.nih.gov/pubmed/36159558 http://dx.doi.org/10.1155/2022/3512582 |
_version_ | 1784796901144526848 |
---|---|
author | Liu, Guoliang Qin, Mingzhao |
author_facet | Liu, Guoliang Qin, Mingzhao |
author_sort | Liu, Guoliang |
collection | PubMed |
description | BACKGROUND: Antibiotic resistance is a global public health problem, leading to high mortality and treatment costs. To achieve more efficient treatment protocols and better patient recovery, the distribution and drug resistance of pathogens in our hospital were investigated, allowing significant clinical guidance for the use of antimicrobials. METHODS: In this retrospective study (2017–2019), 3482 positive samples were isolated from 43,981 specimens in 2017; 3750 positive specimens were isolated from 42,923 specimens in 2018; and 3839 positive pathogens were isolated from 46,341 specimens in 2019. These samples were from various parts of the patients, including the respiratory tract, urine, blood, wound secretions, bile, and puncture fluids. The distribution and antibiotic resistance of these isolated pathogens from the whole hospital were analyzed. RESULTS: The results from pathogen isolation showed that Escherichia coli (12.8%), Staphylococcus aureus (11%), Klebsiella pneumoniae (10.8%), Pseudomonas aeruginosa (10.7%), and Acinetobacter baumannii (6.4%) represented the five main pathogenic bacteria in our hospital. Pseudomonas aeruginosa (16.2% and 17.5%) occupied the largest proportion in the central intensive care unit (central ICU) and respiratory intensive care unit (RICU), while Acinetobacter baumannii (15.4%) was the most common pathogen in the emergency intensive care unit (EICU). The resistance rate of Escherichia coli to trimethoprim and minocycline was 100%, and the sensitivity rate to ertapenem, furantoin, and amikacin was above 90%. The resistance rate of Pseudomonas aeruginosa to all antibiotics, such as piperacillin and ciprofloxacin, was under 40%. The sensitivity rate of Acinetobacter baumannii to tigecycline and minocycline was less than 30%, and the resistance rate to many drugs such as piperacillin, ceftazidime, and imipenem was above 60%. Extended-spectrum β-lactamases (ESBLs)-producing Klebsiella pneumoniae (ESBLs-KPN) and carbapenem-resistant Klebsiella pneumoniae (CRE-KPN), ESBLs-producing Escherichia coli (ESBLs-ECO) and carbapenem-resistant Escherichia coli (CRE-ECO), multidrug-resistant Acinetobacter baumannii (MDR-AB), multidrug-resistant Pseudomonas aeruginosa (MDR-PAE), and methicillin-resistant Staphylococcus aureus (MRSA) are all important multidrug-resistant bacteria found in our hospital. The resistance rate of ESBLs-producing Enterobacteriaceae to ceftriaxone and amcarcillin-sulbactam was above 95%. CRE Enterobacteriaceae bacteria showed the highest resistance to amcarcillin-sulbactam (97.1%), and the resistance rates of MDR-AB to cefotaxime, cefepime, and aztreonam were 100%. The resistance rates of MDR-PAE to ceftazidime, imipenem, and levofloxacin were 100%, and the sensitivity rate to polymyxin B was above 98%. The resistance rate of MRSA to oxacillin was 100%, and the sensitivity rate to linezolid and vancomycin was 100%. CONCLUSION: The distribution of pathogenic bacteria in different hospital departments and sample sources was markedly different. Therefore, targeted prevention and control of key pathogenic bacteria in different hospital departments is necessary, and understanding both drug resistance and multiple drug resistance of the main pathogenic bacteria may provide guidance for the rational use of antibiotics in the clinic. |
format | Online Article Text |
id | pubmed-9507740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95077402022-09-24 Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 Liu, Guoliang Qin, Mingzhao Evid Based Complement Alternat Med Research Article BACKGROUND: Antibiotic resistance is a global public health problem, leading to high mortality and treatment costs. To achieve more efficient treatment protocols and better patient recovery, the distribution and drug resistance of pathogens in our hospital were investigated, allowing significant clinical guidance for the use of antimicrobials. METHODS: In this retrospective study (2017–2019), 3482 positive samples were isolated from 43,981 specimens in 2017; 3750 positive specimens were isolated from 42,923 specimens in 2018; and 3839 positive pathogens were isolated from 46,341 specimens in 2019. These samples were from various parts of the patients, including the respiratory tract, urine, blood, wound secretions, bile, and puncture fluids. The distribution and antibiotic resistance of these isolated pathogens from the whole hospital were analyzed. RESULTS: The results from pathogen isolation showed that Escherichia coli (12.8%), Staphylococcus aureus (11%), Klebsiella pneumoniae (10.8%), Pseudomonas aeruginosa (10.7%), and Acinetobacter baumannii (6.4%) represented the five main pathogenic bacteria in our hospital. Pseudomonas aeruginosa (16.2% and 17.5%) occupied the largest proportion in the central intensive care unit (central ICU) and respiratory intensive care unit (RICU), while Acinetobacter baumannii (15.4%) was the most common pathogen in the emergency intensive care unit (EICU). The resistance rate of Escherichia coli to trimethoprim and minocycline was 100%, and the sensitivity rate to ertapenem, furantoin, and amikacin was above 90%. The resistance rate of Pseudomonas aeruginosa to all antibiotics, such as piperacillin and ciprofloxacin, was under 40%. The sensitivity rate of Acinetobacter baumannii to tigecycline and minocycline was less than 30%, and the resistance rate to many drugs such as piperacillin, ceftazidime, and imipenem was above 60%. Extended-spectrum β-lactamases (ESBLs)-producing Klebsiella pneumoniae (ESBLs-KPN) and carbapenem-resistant Klebsiella pneumoniae (CRE-KPN), ESBLs-producing Escherichia coli (ESBLs-ECO) and carbapenem-resistant Escherichia coli (CRE-ECO), multidrug-resistant Acinetobacter baumannii (MDR-AB), multidrug-resistant Pseudomonas aeruginosa (MDR-PAE), and methicillin-resistant Staphylococcus aureus (MRSA) are all important multidrug-resistant bacteria found in our hospital. The resistance rate of ESBLs-producing Enterobacteriaceae to ceftriaxone and amcarcillin-sulbactam was above 95%. CRE Enterobacteriaceae bacteria showed the highest resistance to amcarcillin-sulbactam (97.1%), and the resistance rates of MDR-AB to cefotaxime, cefepime, and aztreonam were 100%. The resistance rates of MDR-PAE to ceftazidime, imipenem, and levofloxacin were 100%, and the sensitivity rate to polymyxin B was above 98%. The resistance rate of MRSA to oxacillin was 100%, and the sensitivity rate to linezolid and vancomycin was 100%. CONCLUSION: The distribution of pathogenic bacteria in different hospital departments and sample sources was markedly different. Therefore, targeted prevention and control of key pathogenic bacteria in different hospital departments is necessary, and understanding both drug resistance and multiple drug resistance of the main pathogenic bacteria may provide guidance for the rational use of antibiotics in the clinic. Hindawi 2022-09-16 /pmc/articles/PMC9507740/ /pubmed/36159558 http://dx.doi.org/10.1155/2022/3512582 Text en Copyright © 2022 Guoliang Liu and Mingzhao Qin. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liu, Guoliang Qin, Mingzhao Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 |
title | Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 |
title_full | Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 |
title_fullStr | Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 |
title_full_unstemmed | Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 |
title_short | Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019 |
title_sort | analysis of the distribution and antibiotic resistance of pathogens causing infections in hospitals from 2017 to 2019 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507740/ https://www.ncbi.nlm.nih.gov/pubmed/36159558 http://dx.doi.org/10.1155/2022/3512582 |
work_keys_str_mv | AT liuguoliang analysisofthedistributionandantibioticresistanceofpathogenscausinginfectionsinhospitalsfrom2017to2019 AT qinmingzhao analysisofthedistributionandantibioticresistanceofpathogenscausinginfectionsinhospitalsfrom2017to2019 |